BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33436508)

  • 1. Transcription Inhibitors with XRE DNA-Binding and Cupin Signal-Sensing Domains Drive Metabolic Diversification in
    Trouillon J; Ragno M; Simon V; Attrée I; Elsen S
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33436508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering a hidden functional role of the XRE-cupin protein PsdR as a novel quorum-sensing regulator in Pseudomonas aeruginosa.
    Qiu H; Li Y; Yuan M; Chen H; Dandekar AA; Dai W
    PLoS Pathog; 2024 Mar; 20(3):e1012078. PubMed ID: 38484003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa.
    Long X; Wang X; Mao D; Wu W; Luo Y
    Microbiol Spectr; 2022 Dec; 10(6):e0351122. PubMed ID: 36445133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the two-component systems regulatory network reveals core and accessory regulations across Pseudomonas aeruginosa lineages.
    Trouillon J; Imbert L; Villard AM; Vernet T; Attrée I; Elsen S
    Nucleic Acids Res; 2021 Nov; 49(20):11476-11490. PubMed ID: 34718721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics and evolution of regulons of the LacI-family transcription factors.
    Ravcheev DA; Khoroshkin MS; Laikova ON; Tsoy OV; Sernova NV; Petrova SA; Rakhmaninova AB; Novichkov PS; Gelfand MS; Rodionov DA
    Front Microbiol; 2014; 5():294. PubMed ID: 24966856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AIDmut-Seq: a Three-Step Method for Detecting Protein-DNA Binding Specificity.
    Li F; Liu XY; Ni L; Jin F
    Microbiol Spectr; 2023 Feb; 11(1):e0378322. PubMed ID: 36533916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in
    Hebdon SD; Gerritsen AT; Chen YP; Marcano JG; Chou KJ
    Front Microbiol; 2021; 12():695517. PubMed ID: 34566906
    [No Abstract]   [Full Text] [Related]  

  • 8. Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis.
    Darnell CL; Tonner PD; Gulli JG; Schmidler SC; Schmid AK
    mSystems; 2017; 2(5):. PubMed ID: 28951888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.
    La Rosa R; Johansen HK; Molin S
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria.
    Ravcheev DA; Best AA; Sernova NV; Kazanov MD; Novichkov PS; Rodionov DA
    BMC Genomics; 2013 Feb; 14():94. PubMed ID: 23398941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa.
    Huang H; Shao X; Xie Y; Wang T; Zhang Y; Wang X; Deng X
    Nat Commun; 2019 Jul; 10(1):2931. PubMed ID: 31270321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa.
    Glanville DG; Mullineaux-Sanders C; Corcoran CJ; Burger BT; Imam S; Donohue TJ; Ulijasz AT
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33531406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in Pseudomonas aeruginosa.
    Pletzer D; Blimkie TM; Wolfmeier H; Li Y; Baghela A; Lee AHY; Falsafi R; Hancock REW
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32753509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Fitness Determinants during Energy-Limited Growth Arrest in
    Basta DW; Bergkessel M; Newman DK
    mBio; 2017 Nov; 8(6):. PubMed ID: 29184024
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Xie Y; Shao X; Zhang Y; Liu J; Wang T; Zhang W; Hua C; Deng X
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890603
    [No Abstract]   [Full Text] [Related]  

  • 16. The transcriptional regulators of virulence for
    Shao X; Yao C; Ding Y; Hu H; Qian G; He M; Deng X
    Genes Dis; 2023 Sep; 10(5):2049-2063. PubMed ID: 37492705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Regulatory Network of Pseudomonas aeruginosa.
    Galán-Vásquez E; Luna B; Martínez-Antonio A
    Microb Inform Exp; 2011 Jun; 1(1):3. PubMed ID: 22587778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853.
    Cao H; Lai Y; Bougouffa S; Xu Z; Yan A
    BMC Genomics; 2017 Jun; 18(1):459. PubMed ID: 28606056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.
    Shao X; Zhang X; Zhang Y; Zhu M; Yang P; Yuan J; Xie Y; Zhou T; Wang W; Chen S; Liang H; Deng X
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29760208
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.