These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 33436609)

  • 1. Inferring high-resolution human mixing patterns for disease modeling.
    Mistry D; Litvinova M; Pastore Y Piontti A; Chinazzi M; Fumanelli L; Gomes MFC; Haque SA; Liu QH; Mu K; Xiong X; Halloran ME; Longini IM; Merler S; Ajelli M; Vespignani A
    Nat Commun; 2021 Jan; 12(1):323. PubMed ID: 33436609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projecting social contact matrices in 152 countries using contact surveys and demographic data.
    Prem K; Cook AR; Jit M
    PLoS Comput Biol; 2017 Sep; 13(9):e1005697. PubMed ID: 28898249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread.
    Fumanelli L; Ajelli M; Manfredi P; Vespignani A; Merler S
    PLoS Comput Biol; 2012; 8(9):e1002673. PubMed ID: 23028275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases.
    Del Valle SY; Hyman JM; Chitnis N
    Math Biosci Eng; 2013; 10(5-6):1475-97. PubMed ID: 24245626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurability of the epidemic reproduction number in data-driven contact networks.
    Liu QH; Ajelli M; Aleta A; Merler S; Moreno Y; Vespignani A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12680-12685. PubMed ID: 30463945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases.
    Kretzschmar M; Mikolajczyk RT
    PLoS One; 2009 Jun; 4(6):e5931. PubMed ID: 19536278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven contact structures: From homogeneous mixing to multilayer networks.
    Aleta A; Ferraz de Arruda G; Moreno Y
    PLoS Comput Biol; 2020 Jul; 16(7):e1008035. PubMed ID: 32673307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale.
    Van den Broeck W; Gioannini C; Gonçalves B; Quaggiotto M; Colizza V; Vespignani A
    BMC Infect Dis; 2011 Feb; 11():37. PubMed ID: 21288355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling optimal treatment strategies in a heterogeneous mixing model.
    Choe S; Lee S
    Theor Biol Med Model; 2015 Nov; 12():28. PubMed ID: 26608713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time variations in the generation time of an infectious disease: implications for sampling to appropriately quantify transmission potential.
    Nishiura H
    Math Biosci Eng; 2010 Oct; 7(4):851-69. PubMed ID: 21077712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive profiling of social mixing patterns in resource poor countries: A mixed methods research protocol.
    Aguolu OG; Kiti MC; Nelson K; Liu CY; Sundaram M; Gramacho S; Jenness S; Melegaro A; Sacoor C; Bardaji A; Macicame I; Jose A; Cavele N; Amosse F; Uamba M; Jamisse E; Tchavana C; Giovanni Maldonado Briones H; Jarquín C; Ajsivinac M; Pischel L; Ahmed N; Mohan VR; Srinivasan R; Samuel P; John G; Ellington K; Augusto Joaquim O; Zelaya A; Kim S; Chen H; Kazi M; Malik F; Yildirim I; Lopman B; Omer SB
    PLoS One; 2024; 19(6):e0301638. PubMed ID: 38913670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel estimates reveal subnational heterogeneities in disease-relevant contact patterns in the United States.
    Breen CF; Mahmud AS; Feehan DM
    PLoS Comput Biol; 2022 Dec; 18(12):e1010742. PubMed ID: 36459512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.
    Grefenstette JJ; Brown ST; Rosenfeld R; DePasse J; Stone NT; Cooley PC; Wheaton WD; Fyshe A; Galloway DD; Sriram A; Guclu H; Abraham T; Burke DS
    BMC Public Health; 2013 Oct; 13():940. PubMed ID: 24103508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Epidemic Patchy Model with Entry-Exit Screening.
    Wang X; Liu S; Wang L; Zhang W
    Bull Math Biol; 2015 Jul; 77(7):1237-55. PubMed ID: 25976693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices.
    Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C
    BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.