These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 33436721)
1. Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Jiang R; He W; He L; Yang JY; Qian B; Zhou W; He P Sci Rep; 2021 Jan; 11(1):810. PubMed ID: 33436721 [TBL] [Abstract][Full Text] [Related]
2. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
3. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. Liu L; Basso B PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907 [TBL] [Abstract][Full Text] [Related]
4. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China. Lin Y; Wu W; Ge Q J Sci Food Agric; 2015 Nov; 95(14):2838-49. PubMed ID: 25428548 [TBL] [Abstract][Full Text] [Related]
5. Projective analysis of staple food crop productivity in adaptation to future climate change in China. Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124 [TBL] [Abstract][Full Text] [Related]
6. Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change. Onyekwelu I; Sharda V Sci Total Environ; 2024 Jun; 927():172205. PubMed ID: 38599397 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability of maize production under future climate change: possible adaptation strategies. Bannayan M; Paymard P; Ashraf B J Sci Food Agric; 2016 Oct; 96(13):4465-74. PubMed ID: 26847375 [TBL] [Abstract][Full Text] [Related]
8. Modeling maize growth and nitrogen dynamics using CERES-Maize (DSSAT) under diverse nitrogen management options in a conservation agriculture-based maize-wheat system. Kumar K; Parihar CM; Nayak HS; Sena DR; Godara S; Dhakar R; Patra K; Sarkar A; Bharadwaj S; Ghasal PC; L Meena A; Reddy KS; Das TK; Jat SL; Sharma DK; Saharawat YS; Singh U; Jat ML; Gathala MK Sci Rep; 2024 May; 14(1):11743. PubMed ID: 38778072 [TBL] [Abstract][Full Text] [Related]
9. Tradeoffs between Maize Silage Yield and Nitrate Leaching in a Mediterranean Nitrate-Vulnerable Zone under Current and Projected Climate Scenarios. Basso B; Giola P; Dumont B; Migliorati Mde A; Cammarano D; Pruneddu G; Giunta F PLoS One; 2016; 11(1):e0146360. PubMed ID: 26784113 [TBL] [Abstract][Full Text] [Related]
10. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Zhang L; Zhang Z; Luo Y; Cao J; Li Z Sci Total Environ; 2020 Aug; 728():138614. PubMed ID: 32344223 [TBL] [Abstract][Full Text] [Related]
11. Climate change and maize yield in southern Africa: what can farm management do? Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975 [TBL] [Abstract][Full Text] [Related]
12. Narrowing Yield Gaps and Enhancing Nitrogen Utilization for Summer Maize ( Ren H; Li Z; Cheng Y; Zhang J; Liu P; Li R; Yang Q; Dong S; Zhang J; Zhao B Front Plant Sci; 2020; 11():560466. PubMed ID: 33312182 [TBL] [Abstract][Full Text] [Related]
13. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Chen X; Chen F; Chen Y; Gao Q; Yang X; Yuan L; Zhang F; Mi G Glob Chang Biol; 2013 Mar; 19(3):923-36. PubMed ID: 23504848 [TBL] [Abstract][Full Text] [Related]
14. Evaluating area-specific adaptation strategies for rainfed maize under future climates of India. Subba Rao AVM; Sarath Chandran MA; Bal SK; Pramod VP; Sandeep VM; Manikandan N; Raju BMK; Prabhakar M; Islam A; Naresh Kumar S; Singh VK Sci Total Environ; 2022 Aug; 836():155511. PubMed ID: 35490805 [TBL] [Abstract][Full Text] [Related]
15. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Liu Z; Hubbard KG; Lin X; Yang X Glob Chang Biol; 2013 Nov; 19(11):3481-92. PubMed ID: 23857749 [TBL] [Abstract][Full Text] [Related]
16. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Parent B; Leclere M; Lacube S; Semenov MA; Welcker C; Martre P; Tardieu F Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10642-10647. PubMed ID: 30275304 [TBL] [Abstract][Full Text] [Related]
17. [Spatial-temporal variations of spring maize potential yields in a changing climate in Northeast China.]. Liu ZJ; Yang XG; Lyu S; Wang J; Lin XM Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):103-112. PubMed ID: 29692018 [TBL] [Abstract][Full Text] [Related]
18. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. He W; Yang JY; Qian B; Drury CF; Hoogenboom G; He P; Lapen D; Zhou W PLoS One; 2018; 13(11):e0207370. PubMed ID: 30444929 [TBL] [Abstract][Full Text] [Related]
19. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. Xiao D; Tao F Int J Biometeorol; 2016 Jul; 60(7):1111-22. PubMed ID: 26589829 [TBL] [Abstract][Full Text] [Related]
20. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Yasin M; Ahmad A; Khaliq T; Habib-Ur-Rahman M; Niaz S; Gaiser T; Ghafoor I; Hassan HSU; Qasim M; Hoogenboom G Environ Sci Pollut Res Int; 2022 Mar; 29(13):18967-18988. PubMed ID: 34705205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]