BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33436721)

  • 21. Management options for mid-century maize (Zea mays L.) in Ethiopia.
    Araya A; Prasad PVV; Gowda PH; Zambreski Z; Ciampitti IA
    Sci Total Environ; 2021 Mar; 758():143635. PubMed ID: 33248791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring adaptation responses of maize to climate change scenarios in southern central Rift Valley of Ethiopia.
    Markos D; Worku W; Mamo G
    Sci Rep; 2023 Aug; 13(1):12949. PubMed ID: 37558728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate-adaptive crop distribution can feed food demand, improve water scarcity, and reduce greenhouse gas emissions.
    Su Z; Zhao J; Zhuang M; Liu Z; Zhao C; Pullens JWM; Liu K; Harrison MT; Yang X
    Sci Total Environ; 2024 Sep; 944():173819. PubMed ID: 38857807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate-associated major food crops production change under multi-scenario in China.
    Liu Y; Zhang J; Pan T; Chen Q; Qin Y; Ge Q
    Sci Total Environ; 2022 Mar; 811():151393. PubMed ID: 34748850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk analysis of maize yield losses in mainland China at the county level.
    Li X; Fang S; Wu D; Zhu Y; Wu Y
    Sci Rep; 2020 Jun; 10(1):10684. PubMed ID: 32606437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China.
    Abdalla M; Song X; Ju X; Topp CFE; Smith P
    Environ Pollut; 2020 Jul; 262():114199. PubMed ID: 32120254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Future climate impacts on maize farming and food security in Malawi.
    Stevens T; Madani K
    Sci Rep; 2016 Nov; 6():36241. PubMed ID: 27824092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China.
    Yan L; Zhang ZD; Zhang JJ; Gao Q; Feng GZ; Abelrahman AM; Chen Y
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4576-84. PubMed ID: 26518001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Impacts of adaptive measures to climate changes on climatic potential productivity of maize in northeast China.].
    Chu Z; Guo JP
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1885-1892. PubMed ID: 29974698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling maize yield, soil nitrogen balance and organic carbon changes under long-term fertilization in Northeast China.
    Yang J; Jiang R; Zhang H; He W; Yang J; He P
    J Environ Manage; 2023 Jan; 325(Pt A):116454. PubMed ID: 36252328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yield Response of Spring Maize under Future Climate and the Effects of Adaptation Measures in Northeast China.
    Koimbori JK; Wang S; Pan J; Guo L; Li K
    Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. China can be self-sufficient in maize production by 2030 with optimal crop management.
    Luo N; Meng Q; Feng P; Qu Z; Yu Y; Liu L; Müller C; Wang P
    Nat Commun; 2023 May; 14(1):2637. PubMed ID: 37149677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain.
    Xin Y; Tao F
    Sci Total Environ; 2019 Mar; 654():480-492. PubMed ID: 30447587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Climatic suitability of spring maize planted in the "sickle bend" area of China and regulation suggestion].
    Mao LX; Zhao JF; Xu LL; Yan H; Li S; Li YF
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3935-3943. PubMed ID: 29704353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating nitrogen management impacts on maize production in the U.S. Midwest.
    Banger K; Nafziger ED; Wang J; Muhammad U; Pittelkow CM
    PLoS One; 2018; 13(10):e0201825. PubMed ID: 30346957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of climate change and mechanized harvesting on maize (Zea mays L.) planting and northern limits in northeast China.
    Liu Y; Zhang L; Yin X; Zou X; Chen F
    J Sci Food Agric; 2021 Jul; 101(9):3889-3897. PubMed ID: 33336788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.