BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33436749)

  • 1. Microfluidic capillary networks are more sensitive than ektacytometry to the decline of red blood cell deformability induced by storage.
    Piety NZ; Stutz J; Yilmaz N; Xia H; Yoshida T; Shevkoplyas SS
    Sci Rep; 2021 Jan; 11(1):604. PubMed ID: 33436749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage.
    Burns JM; Yoshida T; Dumont LJ; Yang X; Piety NZ; Shevkoplyas SS
    Blood Transfus; 2016 Jan; 14(1):80-8. PubMed ID: 26674833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties.
    Reinhart WH; Piety NZ; Deuel JW; Makhro A; Schulzki T; Bogdanov N; Goede JS; Bogdanova A; Abidi R; Shevkoplyas SS
    Transfusion; 2015 Aug; 55(8):1872-81. PubMed ID: 25752902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.
    Daly A; Raval JS; Waters JH; Yazer MH; Kameneva MV
    Clin Hemorheol Microcirc; 2014; 56(4):337-45. PubMed ID: 23818106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage.
    Jeon HJ; Qureshi MM; Lee SY; Chung E
    PLoS One; 2019; 14(10):e0224036. PubMed ID: 31639179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in red blood cell deformability during storage: a microfluidic approach.
    Cluitmans JC; Chokkalingam V; Janssen AM; Brock R; Huck WT; Bosman GJ
    Biomed Res Int; 2014; 2014():764268. PubMed ID: 25295273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells.
    Burns JM; Yang X; Forouzan O; Sosa JM; Shevkoplyas SS
    Transfusion; 2012 May; 52(5):1010-23. PubMed ID: 22043858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion.
    d'Almeida MS; Jagger J; Duggan M; White M; Ellis C; Chin-Yee IH
    Transfus Med; 2000 Dec; 10(4):291-303. PubMed ID: 11123813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients.
    Nagababu E; Scott AV; Johnson DJ; Dwyer IM; Lipsitz JA; Barodka VM; Berkowitz DE; Frank SM
    Transfusion; 2016 May; 56(5):1101-11. PubMed ID: 26825863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves.
    Islamzada E; Matthews K; Guo Q; Santoso AT; Duffy SP; Scott MD; Ma H
    Lab Chip; 2020 Jan; 20(2):226-235. PubMed ID: 31796943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network.
    Piety NZ; Reinhart WH; Pourreau PH; Abidi R; Shevkoplyas SS
    Transfusion; 2016 Apr; 56(4):844-51. PubMed ID: 26711854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic assessment of red blood cell mediated microvascular occlusion.
    Man Y; Kucukal E; An R; Watson QD; Bosch J; Zimmerman PA; Little JA; Gurkan UA
    Lab Chip; 2020 Jun; 20(12):2086-2099. PubMed ID: 32427268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OcclusionChip: A functional microcapillary occlusion assay complementary to ektacytometry for detection of small-fraction red blood cells with abnormal deformability.
    Man Y; An R; Monchamp K; Sekyonda Z; Kucukal E; Federici C; Wulftange WJ; Goreke U; Bode A; Sheehan VA; Gurkan UA
    Front Physiol; 2022; 13():954106. PubMed ID: 36091387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-donor variability in deformability of red blood cells in blood units.
    Barshtein G; Rasmusen TL; Zelig O; Arbell D; Yedgar S
    Transfus Med; 2020 Dec; 30(6):492-496. PubMed ID: 33015934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfusion of stored red blood cells adhere in the rat microvasculature.
    Chin-Yee IH; Gray-Statchuk L; Milkovich S; Ellis CG
    Transfusion; 2009 Nov; 49(11):2304-10. PubMed ID: 19624601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.