These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 33436756)
21. Microbial source tracking of fecal pollution to coral reef lagoons of Norfolk Island, Australia. Vanderzalm J; Currie S; Smith W; Metcalfe S; Taylor N; Ahmed W Sci Total Environ; 2024 Feb; 912():168906. PubMed ID: 38016554 [TBL] [Abstract][Full Text] [Related]
22. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. Remesh AT; Viswanathan R Food Environ Virol; 2024 Jun; 16(2):121-135. PubMed ID: 38413544 [TBL] [Abstract][Full Text] [Related]
23. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Tartera C; Jofre J Appl Environ Microbiol; 1987 Jul; 53(7):1632-7. PubMed ID: 3662510 [TBL] [Abstract][Full Text] [Related]
24. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. Ahmed W; Payyappat S; Cassidy M; Besley C; Power K Water Res; 2018 Nov; 145():769-778. PubMed ID: 30223182 [TBL] [Abstract][Full Text] [Related]
25. CrAss-like phages are suitable indicators of antibiotic resistance genes found in abundance in fecally polluted samples. Morales-Cortés S; Sala-Comorera L; Gómez-Gómez C; Muniesa M; García-Aljaro C Environ Pollut; 2024 Oct; 359():124713. PubMed ID: 39134166 [TBL] [Abstract][Full Text] [Related]
26. Development of new host-specific Bacteroides qPCRs for the identification of fecal contamination sources in water. Gómez-Doñate M; Casanovas-Massana A; Muniesa M; Blanch AR Microbiologyopen; 2016 Feb; 5(1):83-94. PubMed ID: 26763626 [TBL] [Abstract][Full Text] [Related]
27. Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal. Malla B; Ghaju Shrestha R; Tandukar S; Sherchand JB; Haramoto E Food Environ Virol; 2019 Sep; 11(3):274-287. PubMed ID: 31087275 [TBL] [Abstract][Full Text] [Related]
28. Prevalence and abundance of traditional and host-associated fecal indicators in urban estuarine sediments: Potential implications for estuarine water quality monitoring. Ahmed W; Payyappat S; Cassidy M; Harrison N; Marinoni O; Besley C Water Res; 2020 Oct; 184():116109. PubMed ID: 32818744 [TBL] [Abstract][Full Text] [Related]
30. Human-Associated Bacteroides spp. and Human Polyomaviruses as Microbial Source Tracking Markers in Hawaii. Kirs M; Caffaro-Filho RA; Wong M; Harwood VJ; Moravcik P; Fujioka RS Appl Environ Microbiol; 2016 Nov; 82(22):6757-6767. PubMed ID: 27613686 [TBL] [Abstract][Full Text] [Related]
31. Portable platform for rapid in-field identification of human fecal pollution in water. Jiang YS; Riedel TE; Popoola JA; Morrow BR; Cai S; Ellington AD; Bhadra S Water Res; 2018 Mar; 131():186-195. PubMed ID: 29278789 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the host specificity of Bacteroides thetaiotaomicron alpha-1-6, mannanase gene as a sewage marker. Aslan A; Rose JB Lett Appl Microbiol; 2013 Jan; 56(1):51-6. PubMed ID: 23078617 [TBL] [Abstract][Full Text] [Related]
33. Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. McQuaig SM; Scott TM; Harwood VJ; Farrah SR; Lukasik JO Appl Environ Microbiol; 2006 Dec; 72(12):7567-74. PubMed ID: 16997988 [TBL] [Abstract][Full Text] [Related]
34. Occurrence of bacteriophages infecting Bacteroides host strains (ARABA 84 and GB-124) in fecal samples of human and animal origin. Diston D; Wicki M J Water Health; 2015 Sep; 13(3):654-61. PubMed ID: 26322751 [TBL] [Abstract][Full Text] [Related]
35. Assessment of crAssphage as a human fecal source tracking marker in the lower Great Lakes. Li E; Saleem F; Edge TA; Schellhorn HE Sci Total Environ; 2024 Feb; 912():168840. PubMed ID: 38036144 [TBL] [Abstract][Full Text] [Related]
36. Microbial source tracking of untreated human wastewater and animal scats in urbanized estuarine waters. Ahmed W; Payyappat S; Cassidy M; Harrison N; Besley C Sci Total Environ; 2023 Jun; 877():162764. PubMed ID: 36907409 [TBL] [Abstract][Full Text] [Related]
37. Diversity of bacteroides fragilis strains in their capacity to recover phages from human and animal wastes and from fecally polluted wastewater. Puig A; Queralt N; Jofre J; Araujo R Appl Environ Microbiol; 1999 Apr; 65(4):1772-6. PubMed ID: 10103280 [TBL] [Abstract][Full Text] [Related]
38. Developing a novel Bifidobacterium phage quantitative polymerase chain reaction-based assay for tracking untreated wastewater. Li X; Ahmed W; Wu Z; Xia Y Sci Total Environ; 2022 Sep; 838(Pt 2):155815. PubMed ID: 35550888 [TBL] [Abstract][Full Text] [Related]
39. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Shkoporov AN; Khokhlova EV; Fitzgerald CB; Stockdale SR; Draper LA; Ross RP; Hill C Nat Commun; 2018 Nov; 9(1):4781. PubMed ID: 30429469 [TBL] [Abstract][Full Text] [Related]
40. Specificity of a Bacteroides thetaiotaomicron marker for human feces. Carson CA; Christiansen JM; Yampara-Iquise H; Benson VW; Baffaut C; Davis JV; Broz RR; Kurtz WB; Rogers WM; Fales WH Appl Environ Microbiol; 2005 Aug; 71(8):4945-9. PubMed ID: 16085903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]