These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33436781)

  • 21. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study.
    Fu Q; Chen Y; Li Z; Jing Q; Hu C; Liu H; Bao J; Hong Y; Shi T; Li K; Zou H; Song Y; Wang H; Wang X; Wang Y; Liu J; Liu H; Chen S; Chen R; Zhang M; Zhao J; Xiang J; Liu B; Jia J; Wu H; Zhao Y; Wan L; Xiong X
    EClinicalMedicine; 2020 Oct; 27():100558. PubMed ID: 33150326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Uterine Fibroids Detection in Ultrasound Images Using Deep Convolutional Neural Networks.
    Shahzad A; Mushtaq A; Sabeeh AQ; Ghadi YY; Mushtaq Z; Arif S; Ur Rehman MZ; Qureshi MF; Jamil F
    Healthcare (Basel); 2023 May; 11(10):. PubMed ID: 37239779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
    Burlina PM; Joshi N; Pekala M; Pacheco KD; Freund DE; Bressler NM
    JAMA Ophthalmol; 2017 Nov; 135(11):1170-1176. PubMed ID: 28973096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Slit-Lamp Images for Deep Learning-Based Identification of Bacterial and Fungal Keratitis: Model Development and Validation with Different Convolutional Neural Networks.
    Hung N; Shih AK; Lin C; Kuo MT; Hwang YS; Wu WC; Kuo CF; Kang EY; Hsiao CH
    Diagnostics (Basel); 2021 Jul; 11(7):. PubMed ID: 34359329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography.
    Cho BH; Lee DY; Park KA; Oh SY; Moon JH; Lee GI; Noh H; Chung JK; Kang MC; Chung MJ
    BMC Ophthalmol; 2020 Oct; 20(1):407. PubMed ID: 33036582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smartphone-Acquired Anterior Segment Images for Deep Learning Prediction of Anterior Chamber Depth: A Proof-of-Concept Study.
    Qian C; Jiang Y; Soh ZD; Sakthi Selvam G; Xiao S; Tham YC; Xu X; Liu Y; Li J; Zhong H; Cheng CY
    Front Med (Lausanne); 2022; 9():912214. PubMed ID: 35814744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
    Jammal AA; Thompson AC; Mariottoni EB; Berchuck SI; Urata CN; Estrela T; Wakil SM; Costa VP; Medeiros FA
    Am J Ophthalmol; 2020 Mar; 211():123-131. PubMed ID: 31730838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.
    Wilczyński M; Pośpiech-Zabierek A
    Klin Oczna; 2015; 117(3):153-9. PubMed ID: 26999937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs.
    Thompson AC; Jammal AA; Medeiros FA
    Am J Ophthalmol; 2019 May; 201():9-18. PubMed ID: 30689990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A deep learning model for the detection of both advanced and early glaucoma using fundus photography.
    Ahn JM; Kim S; Ahn KS; Cho SH; Lee KB; Kim US
    PLoS One; 2018; 13(11):e0207982. PubMed ID: 30481205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promoting smartphone-based keratitis screening using meta-learning: A multicenter study.
    Li Z; Wang Y; Chen K; Qiang W; Zong X; Ding K; Wang S; Yin S; Jiang J; Chen W
    J Biomed Inform; 2024 Sep; 157():104722. PubMed ID: 39244181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.
    Lu MC; Deng C; Greenwald MF; Farsiu S; Prajna NV; Nallasamy N; Pawar M; Hart JN; Sr S; Kochar P; Selvaraj S; Levine H; Amescua G; Sepulveda-Beltran PA; Niziol LM; Woodward MA;
    Cornea; 2024 Apr; 43(4):419-424. PubMed ID: 37267474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs.
    Hung KH; Lin C; Roan J; Kuo CF; Hsiao CH; Tan HY; Chen HC; Ma DH; Yeh LK; Lee OK
    Diagnostics (Basel); 2022 Apr; 12(4):. PubMed ID: 35453936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.