These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33436820)
41. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling. Li D; Xia H; Li ZY; Hua L; Li L Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039 [TBL] [Abstract][Full Text] [Related]
42. Protein interaction network (PIN)-based breast cancer subsystem identification and activation measurement for prognostic modeling. Lim S; Park Y; Hur B; Kim M; Han W; Kim S Methods; 2016 Nov; 110():81-89. PubMed ID: 27329435 [TBL] [Abstract][Full Text] [Related]
43. A systems pharmacology approach based on oncogenic signalling pathways to determine the mechanisms of action of natural products in breast cancer from transcriptome data. Odongo R; Demiroglu-Zergeroglu A; Çakır T BMC Complement Med Ther; 2021 Jun; 21(1):181. PubMed ID: 34193143 [TBL] [Abstract][Full Text] [Related]
44. gcMECM: graph clustering of mutual exclusivity of cancer mutations. Hu Y; Yan C; Chen Q; Meerzaman D BMC Bioinformatics; 2021 Dec; 22(1):592. PubMed ID: 34906079 [TBL] [Abstract][Full Text] [Related]
45. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis. Zhai Q; Li H; Sun L; Yuan Y; Wang X Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620 [TBL] [Abstract][Full Text] [Related]
46. Screening of Prognostic Factors in Early-Onset Breast Cancer. Yu Z; He Q; Xu G Technol Cancer Res Treat; 2020; 19():1533033819893670. PubMed ID: 32028860 [TBL] [Abstract][Full Text] [Related]
47. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses. Tang D; Zhao X; Zhang L; Wang Z; Wang C J Cell Biochem; 2019 Jun; 120(6):9522-9531. PubMed ID: 30506958 [TBL] [Abstract][Full Text] [Related]
48. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer. Wang H; Yan W; Zhang S; Gu Y; Wang Y; Wei Y; Liu H; Wang F; Wu Q; Zhang Y Oncotarget; 2017 Jul; 8(30):48807-48819. PubMed ID: 28415743 [TBL] [Abstract][Full Text] [Related]
49. Molecular Biology Networks and Key Gene Regulators for Inflammatory Biomarkers Shared by Breast Cancer Development: Multi-Omics Systems Analysis. Jung SY; Papp JC; Pellegrini M; Yu H; Sobel EM Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572592 [TBL] [Abstract][Full Text] [Related]
50. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis. Fang E; Zhang X Cancer Biomark; 2017 Dec; 21(1):373-381. PubMed ID: 29081411 [TBL] [Abstract][Full Text] [Related]
51. Integrating mutation and gene expression cross-sectional data to infer cancer progression. Fleck JL; Pavel AB; Cassandras CG BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975 [TBL] [Abstract][Full Text] [Related]
52. Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data. Sivan SL; Sukumara Pillai VCS Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053185 [TBL] [Abstract][Full Text] [Related]
53. Bioinformatic identification of chemoresistance-associated microRNAs in breast cancer based on microarray data. Wang YW; Zhang W; Ma R Oncol Rep; 2018 Mar; 39(3):1003-1010. PubMed ID: 29328395 [TBL] [Abstract][Full Text] [Related]
54. An Integrated Systems Biology and Network-Based Approaches to Identify Novel Biomarkers in Breast Cancer Cell Lines Using Gene Expression Data. Khan A; Rehman Z; Hashmi HF; Khan AA; Junaid M; Sayaf AM; Ali SS; Hassan FU; Heng W; Wei DQ Interdiscip Sci; 2020 Jun; 12(2):155-168. PubMed ID: 32056139 [TBL] [Abstract][Full Text] [Related]
55. The transcription factor CBFB mutations indicate an improved survival in HR+/HER2- breast cancer. Guo L; Chen B; Zhang G; Wang Y; Cao L; Ren C; Wen L; Lin J; Wei G; Liao N Gene; 2020 Oct; 759():144970. PubMed ID: 32711101 [TBL] [Abstract][Full Text] [Related]
56. GTA: a game theoretic approach to identifying cancer subnetwork markers. Farahmand S; Goliaei S; Ansari-Pour N; Razaghi-Moghadam Z Mol Biosyst; 2016 Mar; 12(3):818-25. PubMed ID: 26750920 [TBL] [Abstract][Full Text] [Related]
57. Identifying protein interaction subnetworks by a bagging Markov random field-based method. Chen L; Xuan J; Riggins RB; Wang Y; Clarke R Nucleic Acids Res; 2013 Jan; 41(2):e42. PubMed ID: 23161673 [TBL] [Abstract][Full Text] [Related]
58. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration. Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958 [TBL] [Abstract][Full Text] [Related]
59. Identification of Genes with Prognostic Value in the Breast Cancer Microenvironment Using Bioinformatics Analysis. Ren H; Hu D; Mao Y; Su X Med Sci Monit; 2020 Apr; 26():e920212. PubMed ID: 32251269 [TBL] [Abstract][Full Text] [Related]
60. The repertoire of somatic genetic alterations of acinic cell carcinomas of the breast: an exploratory, hypothesis-generating study. Guerini-Rocco E; Hodi Z; Piscuoglio S; Ng CK; Rakha EA; Schultheis AM; Marchiò C; da Cruz Paula A; De Filippo MR; Martelotto LG; De Mattos-Arruda L; Edelweiss M; Jungbluth AA; Fusco N; Norton L; Weigelt B; Ellis IO; Reis-Filho JS J Pathol; 2015 Oct; 237(2):166-78. PubMed ID: 26011570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]