These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33436980)

  • 1. Scalable long read self-correction and assembly polishing with multiple sequence alignment.
    Morisse P; Marchet C; Limasset A; Lecroq T; Lefebvre A
    Sci Rep; 2021 Jan; 11(1):761. PubMed ID: 33436980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.
    Morisse P; Lecroq T; Lefebvre A
    Bioinformatics; 2018 Dec; 34(24):4213-4222. PubMed ID: 29955770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate self-correction of errors in long reads using de Bruijn graphs.
    Salmela L; Walve R; Rivals E; Ukkonen E
    Bioinformatics; 2017 Mar; 33(6):799-806. PubMed ID: 27273673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of tools for long read RNA-seq splice-aware alignment.
    Križanovic K; Echchiki A; Roux J; Šikic M
    Bioinformatics; 2018 Mar; 34(5):748-754. PubMed ID: 29069314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome.
    Goodwin S; Gurtowski J; Ethe-Sayers S; Deshpande P; Schatz MC; McCombie WR
    Genome Res; 2015 Nov; 25(11):1750-6. PubMed ID: 26447147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BlockPolish: accurate polishing of long-read assembly via block divide-and-conquer.
    Huang N; Nie F; Ni P; Gao X; Luo F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34619757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm.
    Firtina C; Kim JS; Alser M; Senol Cali D; Cicek AE; Alkan C; Mutlu O
    Bioinformatics; 2020 Jun; 36(12):3669-3679. PubMed ID: 32167530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
    Li H
    Bioinformatics; 2016 Jul; 32(14):2103-10. PubMed ID: 27153593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VeChat: correcting errors in long reads using variation graphs.
    Luo X; Kang X; Schönhuth A
    Nat Commun; 2022 Nov; 13(1):6657. PubMed ID: 36333324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis.
    Lee JY; Kong M; Oh J; Lim J; Chung SH; Kim JM; Kim JS; Kim KH; Yoo JC; Kwak W
    Sci Rep; 2021 Oct; 11(1):20740. PubMed ID: 34671046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LongStitch: high-quality genome assembly correction and scaffolding using long reads.
    Coombe L; Li JX; Lo T; Wong J; Nikolic V; Warren RL; Birol I
    BMC Bioinformatics; 2021 Oct; 22(1):534. PubMed ID: 34717540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.