BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 33436998)

  • 1. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite.
    Jiao Y; Li S; Li G; Luo Y
    RSC Adv; 2022 Feb; 12(9):5612-5618. PubMed ID: 35425591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Energetic Performance of Aluminum Nanoparticles by Plasma Deposition of Perfluorinated Nanofilms.
    Agarwal PPK; Matsoukas T
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35255-35264. PubMed ID: 35862005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-rich energetic polymer powered aluminum particles with enhanced reactivity and energy content.
    Li Y; Ren H; Wu X; Wang H; Yu X
    Sci Rep; 2022 May; 12(1):8893. PubMed ID: 35614195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction.
    Kwon J; Ducéré JM; Alphonse P; Bahrami M; Petrantoni M; Veyan JF; Tenailleau C; Estève A; Rossi C; Chabal YJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):605-13. PubMed ID: 23289538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Propagating Heat Synthetic Reactivity of Fine Aluminum Particles via Spontaneously Coated Nickel Layer.
    Kim DW; Kim KT; Kwon GH; Song K; Son I
    Sci Rep; 2019 Jan; 9(1):1033. PubMed ID: 30705301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and phase evolution in microwave synthesized Al/FeO4 system.
    Chuan LC; Yoshikawaa N; Taniguchia S
    J Microw Power Electromagn Energy; 2011; 45(3):148-54. PubMed ID: 24427878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Bismuth Oxide Particles Size on the Thermal Excitation and Combustion Properties of Thermite Systems.
    Li S; Guo T; Yao M; Song J; Ding W; Mao Y; Chen J
    ChemistryOpen; 2021 Apr; 10(4):464-470. PubMed ID: 33830676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle size on thermal decomposition of nitrocellulose.
    Sovizi MR; Hajimirsadeghi SS; Naderizadeh B
    J Hazard Mater; 2009 Sep; 168(2-3):1134-9. PubMed ID: 19398264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers.
    Wang F; Wu Z; Shangguan X; Sun Y; Feng J; Li Z; Chen L; Zuo S; Zhuo R; Yan P
    Sci Rep; 2017 Jul; 7(1):5228. PubMed ID: 28701741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion.
    Jiang Y; Deng S; Hong S; Tiwari S; Chen H; Nomura KI; Kalia RK; Nakano A; Vashishta P; Zachariah MR; Zheng X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7451-7458. PubMed ID: 31950820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites.
    Jiang Y; Deng S; Hong S; Zhao J; Huang S; Wu CC; Gottfried JL; Nomura KI; Li Y; Tiwari S; Kalia RK; Vashishta P; Nakano A; Zheng X
    ACS Nano; 2018 Nov; 12(11):11366-11375. PubMed ID: 30335365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic perspective revealing for combustion evolution of nitromethane/nano-aluminum hydride composite.
    Wang XK; Zhao Y; Zhao FQ; Xu SY; Ju XH
    J Mol Graph Model; 2021 Nov; 108():107987. PubMed ID: 34303180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the Effect of the Addition of Nano-Spherical Particles of Aluminum on the Thermal, Mechanical, and Morphological Properties of PBT-PET Blend Composites.
    Alhamidi A; Anis A; Bashir Z; Alam MA; Al-Zahrani SM
    Polymers (Basel); 2023 Sep; 15(17):. PubMed ID: 37688251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly reactive energetic films by pre-stressing nano-aluminum particles.
    Bello MN; Williams AM; Levitas VI; Tamura N; Unruh DK; Warzywoda J; Pantoya ML
    RSC Adv; 2019 Dec; 9(69):40607-40617. PubMed ID: 35542678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.
    Liu X; Zhang Q
    J Hazard Mater; 2015 Dec; 299():603-17. PubMed ID: 26276701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition evaluation of ABC powder in aluminum dust explosion.
    Jiang H; Bi M; Li B; Zhang D; Gao W
    J Hazard Mater; 2019 Jan; 361():273-282. PubMed ID: 30205267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Enhancement on Ignition and Combustion Properties of Boron via Viton Core-Shell Coating.
    Liu Y; Wang W; Zhao B; Chen B; Wang Y; Yan Q
    Langmuir; 2024 Jun; 40(23):12239-12249. PubMed ID: 38819103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.