BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3343709)

  • 1. Migration of cultured fetal spinal cord astrocytes into adult host cervical cord and medulla following transplantation into thoracic spinal cord.
    Goldberg WJ; Bernstein JJ
    J Neurosci Res; 1988; 19(1):34-42. PubMed ID: 3343709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplant-derived astrocytes migrate into host lumbar and cervical spinal cord after implantation of E14 fetal cerebral cortex into adult thoracic spinal cord.
    Goldberg WJ; Bernstein JJ
    J Neurosci Res; 1987; 17(4):391-403. PubMed ID: 3305970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migrated fetal astrocytes modulate nerve growth factor expression in host nucleus gracilis of the medulla after grafting in third cervical hindlimb dorsal columns of the spinal cord.
    Bernstein JJ; Willingham LA; Goldberg WJ
    J Neurosci Res; 1993 Mar; 34(4):394-400. PubMed ID: 8474141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid migration of grafted cortical astrocytes from suspension grafts placed in host thoracic spinal cord.
    Bernstein JJ; Goldberg WJ
    Brain Res; 1989 Jul; 491(2):205-11. PubMed ID: 2765885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal cortical astrocytes migrate from cortical homografts throughout the host brain and over the glia limitans.
    Goldberg WJ; Bernstein JJ
    J Neurosci Res; 1988 May; 20(1):38-45. PubMed ID: 3418752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grafted fetal astrocyte migration can prevent host neuronal atrophy: comparison of astrocytes from cultures and whole piece donors.
    Bernstein JJ; Goldberg WJ
    Restor Neurol Neurosci; 1991 Jan; 2(4):261-70. PubMed ID: 21551612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance of host medullary nucleus gracilis neurons after C3 homografting of fetal spinal cord into host fasciculus gracilis.
    Bernstein JJ; Goldberg WJ
    Brain Res; 1989 May; 488(1-2):180-5. PubMed ID: 2743113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury.
    Joosten EA; Veldhuis WB; Hamers FP
    J Neurosci Res; 2004 Jul; 77(1):127-42. PubMed ID: 15197746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of genetically modified adult astrocytes into the lesioned rat spinal cord.
    Pencalet P; Serguera C; Corti O; Privat A; Mallet J; Giménez y Ribotta M
    J Neurosci Res; 2006 Jan; 83(1):61-7. PubMed ID: 16294335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord.
    Hao Z; Yeung J; Wolf L; Doucette R; Nazarali A
    Dev Dyn; 1999 Oct; 216(2):201-17. PubMed ID: 10536059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar.
    Liesi P; Kauppila T
    Exp Neurol; 2002 Jan; 173(1):31-45. PubMed ID: 11771937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats.
    Hatashita S; Sekiguchi M; Kobayashi H; Konno S; Kikuchi S
    Spine (Phila Pa 1976); 2008 May; 33(12):1344-51. PubMed ID: 18496347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats.
    Afsari ZH; Renno WM; Abd-El-Basset E
    Anat Rec (Hoboken); 2008 Apr; 291(4):390-9. PubMed ID: 18360886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord.
    Deng C; Gorrie C; Hayward I; Elston B; Venn M; Mackay-Sim A; Waite P
    J Neurosci Res; 2006 May; 83(7):1201-12. PubMed ID: 16498634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered immunoreactivity for glial fibrillary acidic protein in astrocytes within 1 h after cervical spinal cord injury.
    Hadley SD; Goshgarian HG
    Exp Neurol; 1997 Aug; 146(2):380-7. PubMed ID: 9270048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human malignant astrocytoma xenografts migrate in rat brain: a model for central nervous system cancer research.
    Bernstein JJ; Goldberg WJ; Laws ER
    J Neurosci Res; 1989 Feb; 22(2):134-43. PubMed ID: 2651679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity.
    Black JA; Sontheimer H; Waxman SG
    Glia; 1993 Apr; 7(4):272-85. PubMed ID: 8391514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons.
    Prieto M; Chauvet N; Alonso G
    Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.