These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33437129)
1. Computational modeling of human papillomavirus with impulsive vaccination. Berhe HW; Al-Arydah M Nonlinear Dyn; 2021; 103(1):925-946. PubMed ID: 33437129 [TBL] [Abstract][Full Text] [Related]
2. Threshold dynamics of a time-delayed SEIRS model with pulse vaccination. Bai Z Math Biosci; 2015 Nov; 269():178-85. PubMed ID: 26408988 [TBL] [Abstract][Full Text] [Related]
3. Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types. Alsaleh AA; Gumel AB Bull Math Biol; 2014 Jul; 76(7):1670-726. PubMed ID: 25033777 [TBL] [Abstract][Full Text] [Related]
4. Modeling the dynamics of COVID-19 in the presence of Delta and Omicron variants with vaccination and non-pharmaceutical interventions. Saha S; Saha AK Heliyon; 2023 Jul; 9(7):e17900. PubMed ID: 37539217 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of cholera epidemics with impulsive vaccination and disinfection. Sisodiya OS; Misra OP; Dhar J Math Biosci; 2018 Apr; 298():46-57. PubMed ID: 29425779 [TBL] [Abstract][Full Text] [Related]
6. Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks. Lv W; Ke Q; Li K Nonlinear Dyn; 2020; 99(2):1507-1523. PubMed ID: 32214672 [TBL] [Abstract][Full Text] [Related]
7. SIR-SVS epidemic models with continuous and impulsive vaccination strategies. Li J; Yang Y J Theor Biol; 2011 Jul; 280(1):108-16. PubMed ID: 21477598 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects. Meng X; Li Z; Wang X Nonlinear Dyn; 2010; 59(3):503-513. PubMed ID: 32214666 [TBL] [Abstract][Full Text] [Related]
9. Mathematical analysis of pulse vaccination in controlling the dynamics of measles transmission. Kanchanarat S; Nudee K; Chinviriyasit S; Chinviriyasit W Infect Dis Model; 2023 Dec; 8(4):964-979. PubMed ID: 37654518 [TBL] [Abstract][Full Text] [Related]
10. The Differential Risk of Cervical Cancer in HPV-Vaccinated and -Unvaccinated Women: A Mathematical Modeling Study. Naslazi E; Hontelez JAC; Naber SK; van Ballegooijen M; de Kok IMCM Cancer Epidemiol Biomarkers Prev; 2021 May; 30(5):912-919. PubMed ID: 33837119 [TBL] [Abstract][Full Text] [Related]
11. Disease control of delay SEIR model with nonlinear incidence rate and vertical transmission. Cheng Y; Pan Q; He M Comput Math Methods Med; 2013; 2013():830237. PubMed ID: 24416073 [TBL] [Abstract][Full Text] [Related]
12. Global asymptotic behavior for mixed vaccination strategy in a delayed epidemic model with interim-immune. Liu SY; Shen MW; Bi YJ Math Biosci Eng; 2020 May; 17(4):3601-3617. PubMed ID: 32987546 [TBL] [Abstract][Full Text] [Related]
13. On a two-strain epidemic mathematical model with vaccination. Yaagoub Z; Danane J; Allali K Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):632-650. PubMed ID: 37018044 [TBL] [Abstract][Full Text] [Related]
14. Global dynamics of a model for treating microorganisms in sewage by periodically adding microbial flocculants. Zhang T; Gao N; Wang TF; Liu HX; Jiang ZC Math Biosci Eng; 2019 Sep; 17(1):179-201. PubMed ID: 31731346 [TBL] [Abstract][Full Text] [Related]
15. The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer. Malik T; Reimer J; Gumel A; Elbasha EH; Mahmud S Math Biosci Eng; 2013 Aug; 10(4):1173-205. PubMed ID: 23906207 [TBL] [Abstract][Full Text] [Related]
16. Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. Gao S; Teng Z; Nieto JJ; Torres A J Biomed Biotechnol; 2007; 2007():64870. PubMed ID: 18322563 [TBL] [Abstract][Full Text] [Related]
17. Deterministic modelling for transmission of Human Papillomavirus 6/11: impact of vaccination. Ribassin-Majed L; Lounes R; Clemençon S Math Med Biol; 2014 Jun; 31(2):125-49. PubMed ID: 23475425 [TBL] [Abstract][Full Text] [Related]
18. On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model. Huo HF; Wu F; Xiang H Math Biosci Eng; 2022 Jan; 19(1):836-854. PubMed ID: 34903015 [TBL] [Abstract][Full Text] [Related]
19. An SIRVS epidemic model with pulse vaccination strategy. Zhang T; Teng Z J Theor Biol; 2008 Jan; 250(2):375-81. PubMed ID: 17988692 [TBL] [Abstract][Full Text] [Related]
20. State-Dependent Pulse Vaccination and Therapeutic Strategy in an SI Epidemic Model with Nonlinear Incidence Rate. Liu K; Zhang T; Chen L Comput Math Methods Med; 2019; 2019():3859815. PubMed ID: 30881479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]