These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33437616)

  • 1. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy.
    Hu L; Zheng C; Zhang M; Zheng K; Zheng J; Song Z; Li X; Zhang Y; Wang Y; Tittel FK
    Photoacoustics; 2021 Mar; 21():100230. PubMed ID: 33437616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering.
    Liu X; Qiao S; Ma Y
    Opt Express; 2022 Jan; 30(2):1304-1313. PubMed ID: 35209293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared dual-gas CH
    Ye W; Xia Z; Hu L; Luo W; Liu W; Xu X; Zheng C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121908. PubMed ID: 36174401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz-enhanced photoacoustic spectroscopic methane sensor system using a quartz tuning fork-embedded, double-pass and off-beam configuration.
    Hu L; Zheng C; Zhang M; Yao D; Zheng J; Zhang Y; Wang Y; Tittel FK
    Photoacoustics; 2020 Jun; 18():100174. PubMed ID: 32211294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing.
    Hu L; Zheng C; Zhang Y; Zheng J; Wang Y; Tittel FK
    Opt Lett; 2020 Apr; 45(7):1894-1897. PubMed ID: 32236026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane and ethane detection from natural gas level down to trace concentrations using a compact mid-IR LITES sensor based on univariate calibration.
    Zifarelli A; Sampaolo A; Patimisco P; Giglio M; Gonzalez M; Wu H; Dong L; Spagnolo V
    Photoacoustics; 2023 Feb; 29():100448. PubMed ID: 36654961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel gas-phase sensing scheme using fiber-coupled off-axis integrated cavity output spectroscopy (FC-OA-ICOS) and cavity-reflected wavelength modulation spectroscopy (CR-WMS).
    Zheng K; Zheng C; Li J; Ma N; Liu Z; Li Y; Zhang Y; Wang Y; Tittel FK
    Talanta; 2020 Jun; 213():120841. PubMed ID: 32200929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell.
    Qiao S; Sampaolo A; Patimisco P; Spagnolo V; Ma Y
    Photoacoustics; 2022 Sep; 27():100381. PubMed ID: 36068798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork.
    Lou C; Dai J; Wang Y; Zhang Y; Li Y; Liu X; Ma Y
    Photoacoustics; 2023 Jun; 31():100515. PubMed ID: 37252649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing.
    Qiao S; Ma P; Tsepelin V; Han G; Liang J; Ren W; Zheng H; Ma Y
    Opt Lett; 2023 Jan; 48(2):419-422. PubMed ID: 36638472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Highly Sensitive Ammonia Detection Based on Light-Induced Thermoelastic Spectroscopy.
    Mi Y; Ma Y
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection.
    Ma Y; Tong Y; He Y; Jin X; Tittel FK
    Opt Express; 2019 Mar; 27(6):9302-9312. PubMed ID: 31052737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y; Liang T; Qiao S; Ma Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting.
    Liu X; Qiao S; Han G; Liang J; Ma Y
    Photoacoustics; 2022 Dec; 28():100422. PubMed ID: 36386294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-gas sensor for simultaneous detection of methane and acetylene based on time-sharing scanning assisted wavelength modulation spectroscopy.
    Zhang L; Zhang Z; Sun P; Pang T; Xia H; Cui X; Guo Q; Sigrist MW; Shu C; Shu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118495. PubMed ID: 32470812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing.
    Ma Y; Feng W; Qiao S; Zhao Z; Gao S; Wang Y
    Opt Express; 2022 May; 30(11):18836-18844. PubMed ID: 36221675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell.
    He Y; Ma Y; Tong Y; Yu X; Tittel FK
    Opt Lett; 2019 Apr; 44(8):1904-1907. PubMed ID: 30985771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector.
    Wei T; Wu H; Dong L; Cui R; Jia S
    Opt Express; 2021 Apr; 29(8):12357-12364. PubMed ID: 33984997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO
    Liu Y; Lin H; Montano BAZ; Zhu W; Zhong Y; Kan R; Yuan B; Yu J; Shao M; Zheng H
    Photoacoustics; 2022 Mar; 25():100332. PubMed ID: 35242537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trace CH
    Dang J; Zhang J; Dong X; Kong L; Yu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120418. PubMed ID: 34600325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.