These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33438417)

  • 21. Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function.
    Kuss M; Kim J; Qi D; Wu S; Lei Y; Chung S; Duan B
    Acta Biomater; 2018 Apr; 71():486-495. PubMed ID: 29555462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue.
    Radisic M; Malda J; Epping E; Geng W; Langer R; Vunjak-Novakovic G
    Biotechnol Bioeng; 2006 Feb; 93(2):332-43. PubMed ID: 16270298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material.
    Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered Polymeric Hydrogels for 3D Tissue Models.
    Park S; Park KM
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human iPS cell-engineered three-dimensional cardiac tissues perfused by capillary networks between host and graft.
    Masumoto H; Yamashita JK
    Inflamm Regen; 2018; 38():26. PubMed ID: 30338009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogel microfabrication technology toward three dimensional tissue engineering.
    Yanagawa F; Sugiura S; Kanamori T
    Regen Ther; 2016 Mar; 3():45-57. PubMed ID: 31245472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.
    Fedorovich NE; Kuipers E; Gawlitta D; Dhert WJ; Alblas J
    Tissue Eng Part A; 2011 Oct; 17(19-20):2473-86. PubMed ID: 21599540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP.
    Pirlo RK; Wu P; Liu J; Ringeisen B
    Biotechnol Bioeng; 2012 Jan; 109(1):262-73. PubMed ID: 21830203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time quantitation of internal metabolic activity of three-dimensional engineered tissues using an oxygen microelectrode and optical coherence tomography.
    Kagawa Y; Haraguchi Y; Tsuneda S; Shimizu T
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):855-864. PubMed ID: 26821598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 25th anniversary article: Engineering hydrogels for biofabrication.
    Malda J; Visser J; Melchels FP; Jüngst T; Hennink WE; Dhert WJ; Groll J; Hutmacher DW
    Adv Mater; 2013 Sep; 25(36):5011-28. PubMed ID: 24038336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography.
    Wadnap S; Krishnamoorthy S; Zhang Z; Xu C
    J Mater Sci Mater Med; 2019 Mar; 30(3):36. PubMed ID: 30840155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure.
    Sämfors S; Karlsson K; Sundberg J; Markstedt K; Gatenholm P
    Biofabrication; 2019 Jul; 11(4):045010. PubMed ID: 31220812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled molecular self-assembly of complex three-dimensional structures in soft materials.
    Huang C; Quinn D; Suresh S; Hsia KJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):70-74. PubMed ID: 29255037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs.
    Pedde RD; Mirani B; Navaei A; Styan T; Wong S; Mehrali M; Thakur A; Mohtaram NK; Bayati A; Dolatshahi-Pirouz A; Nikkhah M; Willerth SM; Akbari M
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28370405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.