These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33438588)
1. In situ injectable hydrogels for spinal cord regeneration: advances from the last 10 years. Morgado PI; Palacios M; Larrain J Biomed Phys Eng Express; 2019 Nov; 6(1):012002. PubMed ID: 33438588 [TBL] [Abstract][Full Text] [Related]
2. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Zhao YZ; Jiang X; Xiao J; Lin Q; Yu WZ; Tian FR; Mao KL; Yang W; Wong HL; Lu CT Acta Biomater; 2016 Jan; 29():71-80. PubMed ID: 26472614 [TBL] [Abstract][Full Text] [Related]
3. Injectable hydrogel materials for spinal cord regeneration: a review. Macaya D; Spector M Biomed Mater; 2012 Feb; 7(1):012001. PubMed ID: 22241481 [TBL] [Abstract][Full Text] [Related]
4. Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair. Fan P; Li S; Yang J; Yang K; Wu P; Dong Q; Zhou Y Int J Biol Macromol; 2024 Apr; 263(Pt 2):130333. PubMed ID: 38408580 [TBL] [Abstract][Full Text] [Related]
5. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. Hu X; Li R; Wu Y; Li Y; Zhong X; Zhang G; Kang Y; Liu S; Xie L; Ye J; Xiao J J Cell Mol Med; 2020 Jul; 24(14):8166-8178. PubMed ID: 32515141 [TBL] [Abstract][Full Text] [Related]
6. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure. Khaing ZZ; Ehsanipour A; Hofstetter CP; Seidlits SK Cells Tissues Organs; 2016; 202(1-2):67-84. PubMed ID: 27701162 [TBL] [Abstract][Full Text] [Related]
7. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. Zaviskova K; Tukmachev D; Dubisova J; Vackova I; Hejcl A; Bystronova J; Pravda M; Scigalkova I; Sulakova R; Velebny V; Wolfova L; Kubinova S J Biomed Mater Res A; 2018 Apr; 106(4):1129-1140. PubMed ID: 29266693 [TBL] [Abstract][Full Text] [Related]
8. Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury. Liu W; Luo Y; Ning C; Zhang W; Zhang Q; Zou H; Fu C J Nanobiotechnology; 2021 Sep; 19(1):286. PubMed ID: 34556136 [TBL] [Abstract][Full Text] [Related]
10. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Wang C; Gong Z; Huang X; Wang J; Xia K; Ying L; Shu J; Yu C; Zhou X; Li F; Liang C; Chen Q Theranostics; 2019; 9(23):7016-7032. PubMed ID: 31660084 [No Abstract] [Full Text] [Related]
11. Evaluation of mechanical properties and therapeutic effect of injectable self-assembling hydrogels for spinal cord injury. Cigognini D; Silva D; Paloppi S; Gelain F J Biomed Nanotechnol; 2014 Feb; 10(2):309-23. PubMed ID: 24738339 [TBL] [Abstract][Full Text] [Related]
12. Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. Alizadeh A; Moradi L; Katebi M; Ai J; Azami M; Moradveisi B; Ostad SN J Tissue Viability; 2020 Nov; 29(4):359-366. PubMed ID: 32839065 [TBL] [Abstract][Full Text] [Related]
13. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Hassannejad Z; Zadegan SA; Vaccaro AR; Rahimi-Movaghar V; Sabzevari O Injury; 2019 Feb; 50(2):278-285. PubMed ID: 30595411 [TBL] [Abstract][Full Text] [Related]
14. Thermosensitive heparin-poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and neuroprotection after spinal cord injury. Zhao YZ; Jiang X; Lin Q; Xu HL; Huang YD; Lu CT; Cai J J Biomed Mater Res A; 2017 Oct; 105(10):2816-2829. PubMed ID: 28593744 [TBL] [Abstract][Full Text] [Related]
15. Cannabidiol-loaded injectable chitosan-based hydrogels promote spinal cord injury repair by enhancing mitochondrial biogenesis. Zhang H; Hu T; Xiong M; Li S; Li WX; Liu J; Zhou X; Qi J; Jiang GB Int J Biol Macromol; 2022 Nov; 221():1259-1270. PubMed ID: 36075309 [TBL] [Abstract][Full Text] [Related]
16. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223 [TBL] [Abstract][Full Text] [Related]
17. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Qin C; Qi Z; Pan S; Xia P; Kong W; Sun B; Du H; Zhang R; Zhu L; Zhou D; Yang X Int J Nanomedicine; 2023; 18():7305-7333. PubMed ID: 38084124 [TBL] [Abstract][Full Text] [Related]
18. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Sitoci-Ficici KH; Matyash M; Uckermann O; Galli R; Leipnitz E; Later R; Ikonomidou C; Gelinsky M; Schackert G; Kirsch M Acta Neurochir (Wien); 2018 Mar; 160(3):449-457. PubMed ID: 29230560 [TBL] [Abstract][Full Text] [Related]
19. Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Ansorena E; De Berdt P; Ucakar B; Simón-Yarza T; Jacobs D; Schakman O; Jankovski A; Deumens R; Blanco-Prieto MJ; Préat V; des Rieux A Int J Pharm; 2013 Oct; 455(1-2):148-58. PubMed ID: 23916821 [TBL] [Abstract][Full Text] [Related]
20. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. Nazemi Z; Nourbakhsh MS; Kiani S; Heydari Y; Ashtiani MK; Daemi H; Baharvand H J Control Release; 2020 May; 321():145-158. PubMed ID: 32035190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]