These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33438588)
21. Enhanced spinal cord regeneration by gelatin/alginate hydrogel scaffolds containing human endometrial stem cells and curcumin-loaded PLGA nanoparticles in rat. Ai A; Hasanzadeh E; Safshekan F; Astaneh ME; SalehiNamini M; Naser R; Madani F; Shirian S; Jahromi HK; Ai J Life Sci; 2023 Oct; 330():122035. PubMed ID: 37611693 [TBL] [Abstract][Full Text] [Related]
22. An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Hong LTA; Kim YM; Park HH; Hwang DH; Cui Y; Lee EM; Yahn S; Lee JK; Song SC; Kim BG Nat Commun; 2017 Sep; 8(1):533. PubMed ID: 28912446 [TBL] [Abstract][Full Text] [Related]
24. Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord. des Rieux A; De Berdt P; Ansorena E; Ucakar B; Damien J; Schakman O; Audouard E; Bouzin C; Auhl D; Simón-Yarza T; Feron O; Blanco-Prieto MJ; Carmeliet P; Bailly C; Clotman F; Préat V J Biomed Mater Res A; 2014 Jul; 102(7):2345-55. PubMed ID: 23946111 [TBL] [Abstract][Full Text] [Related]
25. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. Agarwal G; Shumard S; McCrary MW; Osborne O; Santiago JM; Ausec B; Schmidt CE J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885674 [No Abstract] [Full Text] [Related]
26. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251 [TBL] [Abstract][Full Text] [Related]
27. Sorouri F; Hosseini P; Sharifzadeh M; Kiani S; Khoobi M ACS Appl Mater Interfaces; 2023 Sep; 15(36):42251-42270. PubMed ID: 37647536 [TBL] [Abstract][Full Text] [Related]
28. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair. Syková E; Jendelová P; Urdzíková L; Lesný P; Hejcl A Cell Mol Neurobiol; 2006; 26(7-8):1113-29. PubMed ID: 16633897 [TBL] [Abstract][Full Text] [Related]
29. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502 [TBL] [Abstract][Full Text] [Related]
30. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Wang Y; Lv HQ; Chao X; Xu WX; Liu Y; Ling GX; Zhang P Mil Med Res; 2022 Apr; 9(1):16. PubMed ID: 35410314 [TBL] [Abstract][Full Text] [Related]
31. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026 [TBL] [Abstract][Full Text] [Related]
32. Directional axonal regrowth induced by an aligned fibrin nanofiber hydrogel contributes to improved motor function recovery in canine L2 spinal cord injury. Cao Z; Yao S; Xiong Y; Zhang Z; Yang Y; He F; Zhao H; Guo Y; Wang G; Xie S; Guo H; Wang X J Mater Sci Mater Med; 2020 Apr; 31(5):40. PubMed ID: 32318825 [TBL] [Abstract][Full Text] [Related]
33. Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tukmachev D; Forostyak S; Koci Z; Zaviskova K; Vackova I; Vyborny K; Sandvig I; Sandvig A; Medberry CJ; Badylak SF; Sykova E; Kubinova S Tissue Eng Part A; 2016 Feb; 22(3-4):306-17. PubMed ID: 26729284 [TBL] [Abstract][Full Text] [Related]
34. A Thermosensitive Heparin-Poloxamer Hydrogel Bridges aFGF to Treat Spinal Cord Injury. Wang Q; He Y; Zhao Y; Xie H; Lin Q; He Z; Wang X; Li J; Zhang H; Wang C; Gong F; Li X; Xu H; Ye Q; Xiao J ACS Appl Mater Interfaces; 2017 Mar; 9(8):6725-6745. PubMed ID: 28181797 [TBL] [Abstract][Full Text] [Related]
36. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. Conova L; Vernengo J; Jin Y; Himes BT; Neuhuber B; Fischer I; Lowman A; Vernengo J; Jin Y; Himes BT; Neuhuber B; Fischer I; Lowman A J Neurosurg Spine; 2011 Dec; 15(6):594-604. PubMed ID: 21888482 [TBL] [Abstract][Full Text] [Related]
37. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. Shahemi NH; Mahat MM; Asri NAN; Amir MA; Ab Rahim S; Kasri MA ACS Biomater Sci Eng; 2023 Jul; 9(7):4045-4085. PubMed ID: 37364251 [TBL] [Abstract][Full Text] [Related]
38. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347 [TBL] [Abstract][Full Text] [Related]
39. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Walsh CM; Wychowaniec JK; Brougham DF; Dooley D Pharmacol Ther; 2022 Jun; 234():108043. PubMed ID: 34813862 [TBL] [Abstract][Full Text] [Related]
40. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Kiyotake EA; Martin MD; Detamore MS Acta Biomater; 2022 Feb; 139():43-64. PubMed ID: 33326879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]