These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33438628)

  • 1. Calibration time reduction through local activities estimation in motor imagery-based brain-computer interfaces.
    Togha MM; Salehi MR; Abiri E
    Biomed Phys Eng Express; 2020 Feb; 6(2):025002. PubMed ID: 33438628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
    Luo J; Wang J; Xu R; Xu K
    J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study.
    Miladinović A; Ajčević M; Jarmolowska J; Marusic U; Colussi M; Silveri G; Battaglini PP; Accardo A
    Comput Methods Programs Biomed; 2021 Jan; 198():105808. PubMed ID: 33157470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System.
    Feng JK; Jin J; Daly I; Zhou J; Niu Y; Wang X; Cichocki A
    Comput Intell Neurosci; 2019; 2019():8068357. PubMed ID: 31214255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
    Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC
    Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Transductive Support Vector Machine for a Small Labelled Set in Motor Imagery-Based Brain-Computer Interface.
    Xu Y; Hua J; Zhang H; Hu R; Huang X; Liu J; Guo F
    Comput Intell Neurosci; 2019; 2019():2087132. PubMed ID: 31885530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic time warping-based transfer learning for improving common spatial patterns in brain-computer interface.
    Azab AM; Ahmadi H; Mihaylova L; Arvaneh M
    J Neural Eng; 2020 Feb; 17(1):016061. PubMed ID: 31860902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.
    Park SH; Lee D; Lee SG
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):498-505. PubMed ID: 28961119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems.
    Aghaei AS; Mahanta MS; Plataniotis KN
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):15-29. PubMed ID: 26452197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine.
    Dai Y; Zhang X; Chen Z; Xu X
    Rev Sci Instrum; 2018 Jul; 89(7):074302. PubMed ID: 30068128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A review on electroencephalogram based channel selection].
    Li X; Wang D; Zhang B; Fan C; Chen J; Xu M; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):398-405. PubMed ID: 38686423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space.
    Xygonakis I; Athanasiou A; Pandria N; Kugiumtzis D; Bamidis PD
    Comput Intell Neurosci; 2018; 2018():7957408. PubMed ID: 30154834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neurophysiological approach to spatial filter selection for adaptive brain-computer interfaces.
    Bennett JD; John SE; Grayden DB; Burkitt AN
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33339011
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.