These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 33438668)
1. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans. Ojeda A; Buscher N; Balasubramani P; Maric V; Ramanathan D; Mishra J Biomed Phys Eng Express; 2020 Apr; 6(3):035023. PubMed ID: 33438668 [TBL] [Abstract][Full Text] [Related]
2. Open Ephys electroencephalography (Open Ephys + EEG): a modular, low-cost, open-source solution to human neural recording. Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930 [TBL] [Abstract][Full Text] [Related]
3. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification. Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629 [TBL] [Abstract][Full Text] [Related]
4. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
5. Creamino: A Cost-Effective, Open-Source EEG-Based BCI System. Chiesi M; Guermandi M; Placati S; Scarselli EF; Guerrieri R IEEE Trans Biomed Eng; 2019 Apr; 66(4):900-909. PubMed ID: 30080140 [TBL] [Abstract][Full Text] [Related]
6. Mushu, a free- and open source BCI signal acquisition, written in Python. Venthur B; Blankertz B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1786-8. PubMed ID: 23366257 [TBL] [Abstract][Full Text] [Related]
7. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone. Blum S; Debener S; Emkes R; Volkening N; Fudickar S; Bleichner MG Biomed Res Int; 2017; 2017():3072870. PubMed ID: 29349070 [TBL] [Abstract][Full Text] [Related]
8. [A review of brain-computer interfaces (BCIs)]. Yang BH; Yan GZ; Yan RG Zhongguo Yi Liao Qi Xie Za Zhi; 2005 Jul; 29(5):353-7. PubMed ID: 16419943 [TBL] [Abstract][Full Text] [Related]
9. LivBioSig: development of a toolbox for online bio-signals processing and experimentation. Lorrain T; Niazi IK; Thibergien O; Jiang N; Farina D Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7302-5. PubMed ID: 22256025 [TBL] [Abstract][Full Text] [Related]
10. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. Lotte F; Bougrain L; Cichocki A; Clerc M; Congedo M; Rakotomamonjy A; Yger F J Neural Eng; 2018 Jun; 15(3):031005. PubMed ID: 29488902 [TBL] [Abstract][Full Text] [Related]
11. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Delorme A; Mullen T; Kothe C; Akalin Acar Z; Bigdely-Shamlo N; Vankov A; Makeig S Comput Intell Neurosci; 2011; 2011():130714. PubMed ID: 21687590 [TBL] [Abstract][Full Text] [Related]
12. Wyrm: A Brain-Computer Interface Toolbox in Python. Venthur B; Dähne S; Höhne J; Heller H; Blankertz B Neuroinformatics; 2015 Oct; 13(4):471-86. PubMed ID: 26001643 [TBL] [Abstract][Full Text] [Related]
14. Online EEG artifact removal for BCI applications by adaptive spatial filtering. Guarnieri R; Marino M; Barban F; Ganzetti M; Mantini D J Neural Eng; 2018 Oct; 15(5):056009. PubMed ID: 29952752 [TBL] [Abstract][Full Text] [Related]
15. An open-source human-in-the-loop BCI research framework: method and design. Gemborn Nilsson M; Tufvesson P; Heskebeck F; Johansson M Front Hum Neurosci; 2023; 17():1129362. PubMed ID: 37441434 [TBL] [Abstract][Full Text] [Related]
17. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development. Brumberg JS; Lorenz SD; Galbraith BV; Guenther FH Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2505-8. PubMed ID: 23366434 [TBL] [Abstract][Full Text] [Related]
18. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
19. A conceptual space for EEG-based brain-computer interfaces. Kosmyna N; Lécuyer A PLoS One; 2019; 14(1):e0210145. PubMed ID: 30605482 [TBL] [Abstract][Full Text] [Related]
20. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Bashashati A; Fatourechi M; Ward RK; Birch GE J Neural Eng; 2007 Jun; 4(2):R32-57. PubMed ID: 17409474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]