BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33438674)

  • 1. High quality proton portal imaging using deep learning for proton radiation therapy: a phantom study.
    Charyyev S; Lei Y; Harms J; Eaton B; McDonald M; Curran WJ; Liu T; Zhou J; Zhang R; Yang X
    Biomed Phys Eng Express; 2020 Apr; 6(3):035029. PubMed ID: 33438674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
    Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X
    Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning in computed tomography super resolution using multi-modality data training.
    Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S
    Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
    Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: a human skull phantom study.
    Yong TH; Yang S; Lee SJ; Park C; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ
    Sci Rep; 2021 Jul; 11(1):15083. PubMed ID: 34301984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning.
    Jiang Z; Polf JC; Barajas CA; Gobbert MK; Ren L
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36848674
    [No Abstract]   [Full Text] [Related]  

  • 9. Deep learning-based fast volumetric imaging using kV and MV projection images for lung cancer radiotherapy: A feasibility study.
    Lei Y; Tian Z; Wang T; Roper J; Xie H; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2023 Sep; 50(9):5518-5527. PubMed ID: 36939395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep-learning method for generating synthetic kV-CT and improving tumor segmentation for helical tomotherapy of nasopharyngeal carcinoma.
    Chen X; Yang B; Li J; Zhu J; Ma X; Chen D; Hu Z; Men K; Dai J
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700300
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthetic dual-energy CT for MRI-only based proton therapy treatment planning using label-GAN.
    Liu R; Lei Y; Wang T; Zhou J; Roper J; Lin L; McDonald MW; Bradley JD; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 Mar; 66(6):065014. PubMed ID: 33596558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decompose kV projection using neural network for improved motion tracking in paraspinal SBRT.
    He X; Cai W; Li F; Fan Q; Zhang P; Cuaron JJ; Cerviño LI; Li X; Li T
    Med Phys; 2021 Dec; 48(12):7590-7601. PubMed ID: 34655442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity non-uniformity correction in MR imaging using residual cycle generative adversarial network.
    Dai X; Lei Y; Liu Y; Wang T; Ren L; Curran WJ; Patel P; Liu T; Yang X
    Phys Med Biol; 2020 Nov; 65(21):215025. PubMed ID: 33245059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
    Wang X; Ma C; Davis R; Parikh RR; Jabbour SK; Haffty BG; Yue NJ; Nie K; Zhang Y
    Radiat Oncol; 2019 Dec; 14(1):224. PubMed ID: 31829246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method.
    Liu Y; Lei Y; Wang Y; Wang T; Ren L; Lin L; McDonald M; Curran WJ; Liu T; Zhou J; Yang X
    Phys Med Biol; 2019 Jul; 64(14):145015. PubMed ID: 31146267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.