These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33438680)

  • 21. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G; Pater P; Enger SA
    Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams.
    Mobit P; Agyingi E; Sandison G
    Radiat Prot Dosimetry; 2006; 119(1-4):497-9. PubMed ID: 16735558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific absorbed fractions for a revised series of the UF/NCI pediatric reference phantoms: internal electron sources.
    Schwarz BC; Godwin WJ; Wayson MB; Dewji SA; Jokisch DW; Lee C; Bolch WE
    Phys Med Biol; 2021 Jan; 66(3):035005. PubMed ID: 33142278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo modelling of radiotherapy kV x-ray units.
    Verhaegen F; Nahum AE; Van de Putte S; Namito Y
    Phys Med Biol; 1999 Jul; 44(7):1767-89. PubMed ID: 10442712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Monte Carlo calculated electron slowing-down spectra generated by 60Co gamma-rays, electrons, protons and light ions.
    Tilly N; Fernández-Varea JM; Grusell E; Brahme A
    Phys Med Biol; 2002 Apr; 47(8):1303-19. PubMed ID: 12030557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ENERGY RESPONSE FACTOR of BeO DOSEMETER CHIPS: A MONTE CARLO SIMULATION AND GENERAL CAVITY THEORY STUDY.
    Sarigul N; Surucu M; Aydogan B
    Radiat Prot Dosimetry; 2019 Dec; 185(3):303-309. PubMed ID: 30806472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The quality dependence of LiF TLD in megavoltage photon beams: Monte Carlo simulation and experiments.
    Mobit PN; Mayles P; Nahum AE
    Phys Med Biol; 1996 Mar; 41(3):387-98. PubMed ID: 8778821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources.
    Branco IS; Antunes PC; Fonseca GP; Yoriyaz H
    Phys Med Biol; 2016 Dec; 61(24):8890-8907. PubMed ID: 27910825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method.
    Moignier C; Huet C; Makovicka L
    Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a new tissue equivalent proportional counter for dosimetry of neutron and photon fields: comparison of measurements and Monte Carlo simulations.
    Malimban J; Nam UW; Pyo J; Youn S; Ye SJ
    Phys Med Biol; 2019 Sep; 64(17):17NT02. PubMed ID: 31269471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cavity theory applications for kilovoltage cellular dosimetry.
    Oliver PAK; Thomson RM
    Phys Med Biol; 2017 Jun; 62(11):4440-4459. PubMed ID: 28358721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry.
    Oliver PA; Thomson RM
    Phys Med Biol; 2017 Feb; 62(4):1417-1436. PubMed ID: 28114113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements.
    Zoros E; Moutsatsos A; Pappas EP; Georgiou E; Kollias G; Karaiskos P; Pantelis E
    Phys Med Biol; 2017 Sep; 62(18):7532-7555. PubMed ID: 28796643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4.
    Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K
    Phys Med Biol; 2020 Mar; 65(5):055015. PubMed ID: 31962306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy dependence of new thermoluminescent detectors in terms of HP(10) values.
    Miljanić S; Knezević Z; Stuhec M; Ranogajec-Komor M; Krpan K; Vekić B
    Radiat Prot Dosimetry; 2003; 106(3):253-6. PubMed ID: 14690327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculated beam quality correction factors for ionization chambers in MV photon beams.
    Tikkanen J; Zink K; Pimpinella M; Teles P; Borbinha J; Ojala J; Siiskonen T; Gomà C; Pinto M
    Phys Med Biol; 2020 Mar; 65(7):075003. PubMed ID: 31995531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of Monte Carlo simulations for accurate dose determination with thermoluminescence dosemeters in radiation therapy beams.
    Mobit P
    Radiat Prot Dosimetry; 2002; 101(1-4):383-6. PubMed ID: 12382773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.