BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33438794)

  • 1. Tagged Benzoxazin-4-Ones as Novel Activity-Based Probes for Serine Proteases.
    Yang J; Mendowicz RJ; Verhelst SHL
    Chembiochem; 2021 May; 22(9):1578-1581. PubMed ID: 33438794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.
    Haedke U; Götz M; Baer P; Verhelst SH
    Bioorg Med Chem; 2012 Jan; 20(2):633-40. PubMed ID: 21454080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases.
    Yang J; Barniol-Xicota M; Nguyen MTN; Ticha A; Strisovsky K; Verhelst SHL
    Bioorg Med Chem Lett; 2018 May; 28(8):1423-1427. PubMed ID: 29506958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.
    Goel P; Jumpertz T; Tichá A; Ogorek I; Mikles DC; Hubalek M; Pietrzik CU; Strisovsky K; Schmidt B; Weggen S
    Bioorg Med Chem Lett; 2018 May; 28(8):1417-1422. PubMed ID: 29463448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
    Panigrahi R; Lemieux MJ
    Adv Exp Med Biol; 2015; 883():107-17. PubMed ID: 26621464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the exosite of rhomboid protease affect substrate processing and inhibition?
    Shokhen M; Albeck A
    Protein Sci; 2017 Dec; 26(12):2355-2366. PubMed ID: 28884847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay.
    Vosyka O; Vinothkumar KR; Wolf EV; Brouwer AJ; Liskamp RM; Verhelst SH
    Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2472-7. PubMed ID: 23359682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoramidates as novel activity-based probes for serine proteases.
    Haedke UR; Frommel SC; Hansen F; Hahne H; Kuster B; Bogyo M; Verhelst SH
    Chembiochem; 2014 May; 15(8):1106-10. PubMed ID: 24817682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases.
    Faucher F; Bennett JM; Bogyo M; Lovell S
    Cell Chem Biol; 2020 Aug; 27(8):937-952. PubMed ID: 32726586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Dye-Modified Oligonucleotides via Copper(I)-Catalyzed Alkyne Azide Cycloaddition Using On- and Off-Bead Approaches.
    Schwechheimer C; Doll L; Wagenknecht HA
    Curr Protoc Nucleic Acid Chem; 2018 Mar; 72(1):4.80.1-4.80.13. PubMed ID: 29927126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Incorporation of N-Acetyl Muramic Acid Probes into Bacterial Peptidoglycan.
    DeMeester KE; Liang H; Zhou J; Wodzanowski KA; Prather BL; Santiago CC; Grimes CL
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e74. PubMed ID: 31763799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition.
    Wang W; Hong S; Tran A; Jiang H; Triano R; Liu Y; Chen X; Wu P
    Chem Asian J; 2011 Oct; 6(10):2796-802. PubMed ID: 21905231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper Catalysis in Living Systems and In Situ Drug Synthesis.
    Clavadetscher J; Hoffmann S; Lilienkampf A; Mackay L; Yusop RM; Rider SA; Mullins JJ; Bradley M
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15662-15666. PubMed ID: 27860120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of copper-catalyzed click chemistry in activity-based protein profiling.
    Martell J; Weerapana E
    Molecules; 2014 Jan; 19(2):1378-93. PubMed ID: 24473203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids.
    Strisovsky K
    FEBS J; 2013 Apr; 280(7):1579-603. PubMed ID: 23432912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody functionalization with a dual reactive hydrazide/click crosslinker.
    Le HT; Jang JG; Park JY; Lim CW; Kim TW
    Anal Biochem; 2013 Apr; 435(1):68-73. PubMed ID: 23313755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An azide-modified nucleoside for metabolic labeling of DNA.
    Neef AB; Luedtke NW
    Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fluorescent-Labeled Phosphono Bisbenzguanidine As an Activity-Based Probe for Matriptase.
    Häußler D; Schulz-Fincke AC; Beckmann AM; Keils A; Gilberg E; Mangold M; Bajorath J; Stirnberg M; Steinmetzer T; Gütschow M
    Chemistry; 2017 Apr; 23(22):5205-5209. PubMed ID: 28370501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifluorinated Aryl Azides for the Development of Improved H
    Kang X; Cai X; Yi L; Xi Z
    Chem Asian J; 2020 May; 15(9):1420-1429. PubMed ID: 32144862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.