BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33438837)

  • 1. Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy.
    Lalonde JW; Noojin GD; Pope NJ; Powell SM; Yakovlev VV; Denton ML
    J Biophotonics; 2021 Apr; 14(4):e202000384. PubMed ID: 33438837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.
    Brazhe NA; Treiman M; Brazhe AR; Find NL; Maksimov GV; Sosnovtseva OV
    PLoS One; 2012; 7(9):e41990. PubMed ID: 22957018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double face of cytochrome c in cancers by Raman imaging.
    Abramczyk H; Brozek-Pluska B; Kopeć M
    Sci Rep; 2022 Feb; 12(1):2120. PubMed ID: 35136078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cardiolipin and cytochrome
    Kopeć M; Borek-Dorosz A; Jarczewska K; Barańska M; Abramczyk H
    Analyst; 2024 Apr; 149(9):2697-2708. PubMed ID: 38506099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy.
    Brazhe NA; Evlyukhin AB; Goodilin EA; Semenova AA; Novikov SM; Bozhevolnyi SI; Chichkov BN; Sarycheva AS; Baizhumanov AA; Nikelshparg EI; Deev LI; Maksimov EG; Maksimov GV; Sosnovtseva O
    Sci Rep; 2015 Sep; 5():13793. PubMed ID: 26346634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of low temperatures on cytochrome photoresponse in mouse embryos.
    Sazhina EA; Okotrub KA; Amstislavsky SY; Surovtsev NV
    Arch Biochem Biophys; 2019 Jul; 669():32-38. PubMed ID: 31128967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free Raman observation of cytochrome c dynamics during apoptosis.
    Okada M; Smith NI; Palonpon AF; Endo H; Kawata S; Sodeoka M; Fujita K
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):28-32. PubMed ID: 22184220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction.
    Morimoto T; Chiu LD; Kanda H; Kawagoe H; Ozawa T; Nakamura M; Nishida K; Fujita K; Fujikado T
    Analyst; 2019 Apr; 144(8):2531-2540. PubMed ID: 30839952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.
    Kekilli D; Dworkowski FS; Pompidor G; Fuchs MR; Andrew CR; Antonyuk S; Strange RW; Eady RR; Hasnain SS; Hough MA
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1289-96. PubMed ID: 24816098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the redox states of cytochromes in a living L929 (NCTC) cell by resonance Raman microspectroscopy.
    Kakita M; Okuno M; Hamaguchi HO
    J Biophotonics; 2013 Mar; 6(3):256-9. PubMed ID: 22573518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis.
    Zhang H; Kou Y; Li J; Chen L; Mao Z; Han XX; Zhao B; Ozaki Y
    Anal Chem; 2019 Jan; 91(2):1213-1216. PubMed ID: 30565909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart.
    Brazhe NA; Treiman M; Faricelli B; Vestergaard JH; Sosnovtseva O
    PLoS One; 2013; 8(8):e70488. PubMed ID: 24009655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria.
    Berezhna S; Wohlrab H; Champion PM
    Biochemistry; 2003 May; 42(20):6149-58. PubMed ID: 12755617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite.
    Carballal S; Valez V; Alvarez-Paggi D; Tovmasyan A; Batinic-Haberle I; Ferrer-Sueta G; Murgida DH; Radi R
    Free Radic Biol Med; 2018 Oct; 126():379-392. PubMed ID: 30144631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous flow-resonance Raman spectroscopy of an intermediate redox state of cytochrome C.
    Forster M; Hester RE; Cartling B; Wilbrandt R
    Biophys J; 1982 May; 38(2):111-6. PubMed ID: 6284263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis.
    Birk AV; Chao WM; Bracken C; Warren JD; Szeto HH
    Br J Pharmacol; 2014 Apr; 171(8):2017-28. PubMed ID: 24134698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.
    Okotrub KA; Surovtsev NV
    Biophys J; 2015 Dec; 109(11):2227-34. PubMed ID: 26636934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy.
    Murgida DH; Hildebrandt P
    Acc Chem Res; 2004 Nov; 37(11):854-61. PubMed ID: 15612675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.