These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33439000)

  • 21. Ozark Graphene Nanopore for Efficient Water Desalination.
    Cao Z; Markey G; Barati Farimani A
    J Phys Chem B; 2021 Oct; 125(40):11256-11263. PubMed ID: 34591487
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-layer graphene membranes by crack-free transfer for gas mixture separation.
    Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV
    Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores.
    Agrawal KV; Drahushuk LW; Strano MS
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of nanopore density on ethylene/acetylene separation by monolayer graphene.
    Jin B; Zhang X; Li F; Zhang N; Zong Z; Cao S; Li Z; Chen X
    Phys Chem Chem Phys; 2019 Mar; 21(11):6126-6132. PubMed ID: 30816392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Addressing the isomer cataloguing problem for nanopores in two-dimensional materials.
    Govind Rajan A; Silmore KS; Swett J; Robertson AW; Warner JH; Blankschtein D; Strano MS
    Nat Mater; 2019 Feb; 18(2):129-135. PubMed ID: 30643239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entropic selectivity in air separation via a bilayer nanoporous graphene membrane.
    Wang S; Dai S; Jiang DE
    Phys Chem Chem Phys; 2019 Jul; 21(29):16310-16315. PubMed ID: 31305855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopic model of carbonaceous nanoporous molecular sieves--anomalous transport in molecularly confined spaces.
    Kowalczyk P; Gauden PA; Terzyk AP; Furmaniak S
    Phys Chem Chem Phys; 2010 Oct; 12(37):11351-61. PubMed ID: 20686724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic theory of gas separation in a nanopore and comparison to molecular dynamics simulation.
    ten Bosch A
    J Chem Phys; 2005 Feb; 122(8):84711. PubMed ID: 15836081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas separation using graphene nanosheet: insights from theory and simulation.
    Fatemi SM; Fatemi SJ; Abbasi Z
    J Mol Model; 2020 Oct; 26(11):322. PubMed ID: 33118096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Graphene/Ionic Liquid Composites for Carbon Capture.
    Wang S; Mahurin SM; Dai S; Jiang DE
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17511-17516. PubMed ID: 33832221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances.
    Yuan Z; He G; Li SX; Misra RP; Strano MS; Blankschtein D
    Adv Mater; 2022 Aug; 34(32):e2201472. PubMed ID: 35389537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.
    Esfandiarpoor S; Fazli M; Ganji MD
    Sci Rep; 2017 Nov; 7(1):16561. PubMed ID: 29185458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of layer number on the gas permeation through nanopores within few-layer graphene.
    Cui CX; Jiang JW
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35240582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From molecular sieving to gas effusion through nanoporous 2D graphenes: Comparison between analytical predictions and molecular simulations.
    Guo J; Galliero G; Vermorel R
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.