These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 33439022)

  • 1. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach.
    Terada T; Kulkarni JA; Huynh A; Chen S; van der Meel R; Tam YYC; Cullis PR
    Langmuir; 2021 Jan; 37(3):1120-1128. PubMed ID: 33439022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
    Kulkarni JA; Darjuan MM; Mercer JE; Chen S; van der Meel R; Thewalt JL; Tam YYC; Cullis PR
    ACS Nano; 2018 May; 12(5):4787-4795. PubMed ID: 29614232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by
    Ueda K; Sakagawa Y; Saito T; Fujimoto T; Nakamura M; Sakuma F; Kaneko S; Tokumoto T; Nishimura K; Takeda J; Arai Y; Yamamoto K; Ikeda Y; Higashi K; Moribe K
    Mol Pharm; 2023 Sep; 20(9):4729-4742. PubMed ID: 37606988
    [No Abstract]   [Full Text] [Related]  

  • 4. NMR-based analysis of impact of siRNA mixing conditions on internal structure of siRNA-loaded LNP.
    Ueda K; Sakagawa Y; Saito T; Sakuma F; Tanaka H; Akita H; Higashi K; Moribe K
    J Control Release; 2024 Sep; 373():738-748. PubMed ID: 39053648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function.
    Ramezanpour M; Schmidt ML; Bodnariuc I; Kulkarni JA; Leung SSW; Cullis PR; Thewalt JL; Tieleman DP
    Nanoscale; 2019 Aug; 11(30):14141-14146. PubMed ID: 31334542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe.
    Zhao B; Kamanzi A; Zhang Y; Chan KYT; Robertson M; Leslie S; Cullis PR
    Biosens Bioelectron; 2024 May; 251():116065. PubMed ID: 38330772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the role of helper lipids in lipid nanoparticle formulations of siRNA.
    Kulkarni JA; Witzigmann D; Leung J; Tam YYC; Cullis PR
    Nanoscale; 2019 Nov; 11(45):21733-21739. PubMed ID: 31713568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core.
    Leung AK; Hafez IM; Baoukina S; Belliveau NM; Zhigaltsev IV; Afshinmanesh E; Tieleman DP; Hansen CL; Hope MJ; Cullis PR
    J Phys Chem C Nanomater Interfaces; 2012 Aug; 116(34):18440-18450. PubMed ID: 22962627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.
    Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR
    J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.
    Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR
    J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery.
    Hirai Y; Saeki R; Song F; Koide H; Fukata N; Tomita K; Maeda N; Oku N; Asai T
    Int J Pharm; 2020 Jul; 585():119479. PubMed ID: 32473372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic pH-induced changes in lipid nanoparticle membrane packing.
    Koitabashi K; Nagumo H; Nakao M; Machida T; Yoshida K; Sakai-Kato K
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183627. PubMed ID: 33901441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance.
    Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM
    Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids.
    Park S; Choi YK; Kim S; Lee J; Im W
    J Chem Inf Model; 2021 Oct; 61(10):5192-5202. PubMed ID: 34546048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids.
    Park S; Choi YK; Kim S; Lee J; Im W
    bioRxiv; 2021 Jun; ():. PubMed ID: 34189527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.