These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
7. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe. Zhao B; Kamanzi A; Zhang Y; Chan KYT; Robertson M; Leslie S; Cullis PR Biosens Bioelectron; 2024 May; 251():116065. PubMed ID: 38330772 [TBL] [Abstract][Full Text] [Related]
8. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Kulkarni JA; Witzigmann D; Leung J; Tam YYC; Cullis PR Nanoscale; 2019 Nov; 11(45):21733-21739. PubMed ID: 31713568 [TBL] [Abstract][Full Text] [Related]
10. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441 [TBL] [Abstract][Full Text] [Related]
11. Chemistry of Lipid Nanoparticles for RNA Delivery. Eygeris Y; Gupta M; Kim J; Sahay G Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393 [TBL] [Abstract][Full Text] [Related]
13. Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery. Hirai Y; Saeki R; Song F; Koide H; Fukata N; Tomita K; Maeda N; Oku N; Asai T Int J Pharm; 2020 Jul; 585():119479. PubMed ID: 32473372 [TBL] [Abstract][Full Text] [Related]
14. Acidic pH-induced changes in lipid nanoparticle membrane packing. Koitabashi K; Nagumo H; Nakao M; Machida T; Yoshida K; Sakai-Kato K Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183627. PubMed ID: 33901441 [TBL] [Abstract][Full Text] [Related]
15. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance. Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488 [TBL] [Abstract][Full Text] [Related]
16. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics. De A; Ko YT Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146 [TBL] [Abstract][Full Text] [Related]
17. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related]
18. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. Park S; Choi YK; Kim S; Lee J; Im W J Chem Inf Model; 2021 Oct; 61(10):5192-5202. PubMed ID: 34546048 [TBL] [Abstract][Full Text] [Related]
19. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331 [TBL] [Abstract][Full Text] [Related]
20. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. Park S; Choi YK; Kim S; Lee J; Im W bioRxiv; 2021 Jun; ():. PubMed ID: 34189527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]