These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33439039)
21. Characterization of Rhizoctonia-Like Fungi Isolated from Agronomic Crops and Turfgrasses in Mississippi. Tomaso-Peterson M; Trevathan LE Plant Dis; 2007 Mar; 91(3):260-265. PubMed ID: 30780558 [TBL] [Abstract][Full Text] [Related]
22. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp. Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281 [TBL] [Abstract][Full Text] [Related]
23. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Li W; Sun H; Deng Y; Zhang A; Chen H Curr Genet; 2014 Feb; 60(1):1-9. PubMed ID: 23839120 [TBL] [Abstract][Full Text] [Related]
24. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables. Xu F; Yang G; Wang J; Song Y; Liu L; Zhao K; Li Y; Han Z Front Microbiol; 2018; 9():1054. PubMed ID: 29887840 [TBL] [Abstract][Full Text] [Related]
25. Mechanized Method to Inoculate Field Soil to Evaluate Fusarium Crown Rot of Wheat. Smiley RW Plant Dis; 2019 Nov; 103(11):2857-2864. PubMed ID: 31524084 [TBL] [Abstract][Full Text] [Related]
26. Population Dynamics of Fusarium spp. and Microdochium nivale in Crops and Crop Residues of Winter Wheat. Köhl J; de Haas BH; Kastelein P; Burgers SL; Waalwijk C Phytopathology; 2007 Aug; 97(8):971-8. PubMed ID: 18943637 [TBL] [Abstract][Full Text] [Related]
27. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Nielsen LK; Cook DJ; Edwards SG; Ray RV Int J Food Microbiol; 2014 Jun; 179(100):38-49. PubMed ID: 24727381 [TBL] [Abstract][Full Text] [Related]
29. Effects of Inoculum Density and Cultivar Susceptibility on Rhizoctonia Damping-Off and Crown and Root Rot in Sugar Beet. Brantner JR; Chanda AK Plant Dis; 2021 Apr; 105(4):1019-1025. PubMed ID: 32976076 [TBL] [Abstract][Full Text] [Related]
30. Influence of Semiarid Cropping Systems on Root Diseases and Inoculum Density of Soilborne Pathogens. Smiley RW; Machado S; Gourlie JA; Pritchett LC; Yan G; Jacobsen EE Plant Dis; 2013 Apr; 97(4):547-555. PubMed ID: 30722232 [TBL] [Abstract][Full Text] [Related]
31. Genetic Structure of Populations of the Wheat Sharp Eyespot Pathogen Rhizoctonia cerealis Anastomosis Group D Subgroup I in China. Li W; Guo Y; Zhang A; Chen H Phytopathology; 2017 Feb; 107(2):224-230. PubMed ID: 27726498 [TBL] [Abstract][Full Text] [Related]
32. Induction of volatile organic compounds in Triticum aestivum (wheat) plants following infection by different Rhizoctonia pathogens is species specific. Piesik D; Lemańczyk G; Bocianowski J; Buszewski B; Vidal S; Mayhew CA Phytochemistry; 2022 Jun; 198():113162. PubMed ID: 35278419 [TBL] [Abstract][Full Text] [Related]
33. First Report of Sugar Beet Rhizoctonia Crown and Root Rot Caused by Rhizoctonia solani AG-2-2IIIB in Shanxi Province of China. Zhao C; Wu XH Plant Dis; 2014 Mar; 98(3):419. PubMed ID: 30708416 [TBL] [Abstract][Full Text] [Related]
34. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Zhu X; Lu C; Du L; Ye X; Liu X; Coules A; Zhang Z Plant Biotechnol J; 2017 Jun; 15(6):674-687. PubMed ID: 27862842 [TBL] [Abstract][Full Text] [Related]
35. Fungal Pathogens Associated with Crown and Root Rot of Wheat in Central, Eastern, and Southeastern Kazakhstan. Bozoğlu T; Derviş S; Imren M; Amer M; Özdemir F; Paulitz TC; Morgounov A; Dababat AA; Özer G J Fungi (Basel); 2022 Apr; 8(5):. PubMed ID: 35628673 [TBL] [Abstract][Full Text] [Related]
36. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Zhu X; Rong W; Wang K; Guo W; Zhou M; Wu J; Ye X; Wei X; Zhang Z Plant Biotechnol J; 2022 Apr; 20(4):777-793. PubMed ID: 34873799 [TBL] [Abstract][Full Text] [Related]
37. FUSARIUM HEAD BLIGHT SYMPTOM DISCRIMINATION: A USEFUL TOOL IN THE FIELD EVALUATION OF FUNGICIDE TREATMENTS. Hellin P; Duvivier M; Dedeurwaerder G; Bataille C; Jacquemin G; Chandelier A; Legrève A Commun Agric Appl Biol Sci; 2015; 80(3):501-12. PubMed ID: 27141745 [TBL] [Abstract][Full Text] [Related]
38. Population Dynamics of Wheat Root Pathogens Under Different Tillage Systems in Northeast Oregon. Yin C; McLaughlin K; Paulitz TC; Kroese DR; Hagerty CH Plant Dis; 2020 Oct; 104(10):2649-2657. PubMed ID: 32749926 [TBL] [Abstract][Full Text] [Related]
39. Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State. Jaaffar AK; Paulitz TC; Schroeder KL; Thomashow LS; Weller DM Phytopathology; 2016 May; 106(5):459-73. PubMed ID: 26780436 [TBL] [Abstract][Full Text] [Related]
40. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat. Guo F; Wu T; Shen F; Xu G; Qi H; Zhang Z J Exp Bot; 2021 Oct; 72(20):6904-6919. PubMed ID: 34254642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]