These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33439162)
1. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Khatibi M; Sadeghi A; Ashrafizadeh SN Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162 [TBL] [Abstract][Full Text] [Related]
2. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification. Khatibi M; Ashrafizadeh SN; Sadeghi A Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743 [TBL] [Abstract][Full Text] [Related]
3. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Heydari A; Khatibi M; Ashrafizadeh SN Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455 [TBL] [Abstract][Full Text] [Related]
4. Improved ionic current rectification utilizing cylindrical nanochannels coated with polyelectrolyte layers of non-uniform thickness. Nekoubin N; Hardt S; Sadeghi A Soft Matter; 2024 May; 20(17):3641-3652. PubMed ID: 38623003 [TBL] [Abstract][Full Text] [Related]
5. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Khatibi M; Ashrafizadeh SN Anal Chem; 2023 Dec; 95(49):18188-18198. PubMed ID: 38019778 [TBL] [Abstract][Full Text] [Related]
6. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Karimzadeh M; Khatibi M; Ashrafizadeh SN; Mondal PK Phys Chem Chem Phys; 2022 Aug; 24(34):20303-20317. PubMed ID: 35979759 [TBL] [Abstract][Full Text] [Related]
7. Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation. Long R; Kuang Z; Liu Z; Liu W Phys Chem Chem Phys; 2018 Mar; 20(10):7295-7302. PubMed ID: 29485149 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetic power generation in conical nanochannels: regulation effects due to conicity. Qian F; Zhang W; Huang D; Li W; Wang Q; Zhao C Phys Chem Chem Phys; 2020 Jan; 22(4):2386-2398. PubMed ID: 31938800 [TBL] [Abstract][Full Text] [Related]
9. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
10. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. Khatibi M; Dartoomi H; Ashrafizadeh SN Langmuir; 2023 Sep; 39(38):13717-13734. PubMed ID: 37702658 [TBL] [Abstract][Full Text] [Related]
11. Ion Transport in Multi-Nanochannels Regulated by pH and Ion Concentration. Liu S; Zhang X; Yang Y; Hu N Anal Chem; 2024 Apr; 96(14):5648-5657. PubMed ID: 38556994 [TBL] [Abstract][Full Text] [Related]
12. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
13. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels. Zheng J; Jian Y Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209246 [TBL] [Abstract][Full Text] [Related]
14. Ion current rectification properties of non-Newtonian fluids in conical nanochannels. Tang L; Hao Y; Peng L; Liu R; Zhou Y; Li J Phys Chem Chem Phys; 2024 Jan; 26(4):2895-2906. PubMed ID: 38170851 [TBL] [Abstract][Full Text] [Related]
15. Influence of salt valence on the rectification behavior of nanochannels. Hsu JP; Chen YM; Yang ST; Lin CY; Tseng S J Colloid Interface Sci; 2018 Dec; 531():483-492. PubMed ID: 30055443 [TBL] [Abstract][Full Text] [Related]
16. Chemiosomotic flow in a soft conical nanopore: harvesting enhanced blue energy. Pandey D; Mondal PK; Wongwises S Soft Matter; 2023 Feb; 19(6):1152-1163. PubMed ID: 36633007 [TBL] [Abstract][Full Text] [Related]
17. Diffusioosmotic flows in slit nanochannels. Qian S; Das B; Luo X J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599 [TBL] [Abstract][Full Text] [Related]
18. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. Dartoomi H; Khatibi M; Ashrafizadeh SN Langmuir; 2022 Aug; 38(33):10313-10330. PubMed ID: 35952366 [TBL] [Abstract][Full Text] [Related]
19. Reverse Electrodialysis with Continuous Random Variation in Nanochannel Shape: Salinity Gradient-Driven Power Generation. Zhao R; Zhou J; Bu T; Li H; Jiao Y Nanomaterials (Basel); 2024 Aug; 14(15):. PubMed ID: 39120407 [TBL] [Abstract][Full Text] [Related]
20. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. Wang Y; Chen H; Zhai J ACS Appl Mater Interfaces; 2021 Sep; 13(34):41159-41168. PubMed ID: 34403239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]