These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3343937)

  • 1. The selective response to adenosine of renal microvessels from hamster explants.
    Joyner WL; Mohama RE; Myers TO; Gilmore JP
    Microvasc Res; 1988 Jan; 35(1):122-31. PubMed ID: 3343937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of arginine vasopressin and angiotensin II for microvessels in the hamster cheek pouch after the induction of renovascular hypertension.
    Joyner WL; Mohama RE; Gilmore JP
    Microvasc Res; 1988 Jan; 35(1):8-20. PubMed ID: 3343941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of angiotensin and adenosine in the renal microvasculature.
    Weihprecht H; Lorenz JN; Briggs JP; Schnermann J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F227-39. PubMed ID: 8141324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
    Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E
    Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative reactivity of hamster cheek pouch microvessels to arginine vasopressin and angiotensin II.
    Mohama RE; Joyner WL; Gilmore JP
    Microcirc Endothelium Lymphatics; 1984 Aug; 1(4):397-413. PubMed ID: 6546152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia does not alter angiotensin converting enzyme activity in hamster pulmonary microvessels.
    Shepard JM; Joyner WL; Gilmore JP
    Circ Res; 1987 Aug; 61(2):228-35. PubMed ID: 3040293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of gomerular afferent and efferent arterioles in renal hypertension.
    Click RL; Joyner WL; Gilmore JP
    Kidney Int; 1979 Feb; 15(2):109-15. PubMed ID: 390209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by SR 140333 of NK1 tachykinin receptor-evoked, nitric oxide-dependent vasodilatation in the hamster cheek pouch microvasculature in vivo.
    Hall JM; Brain SD
    Br J Pharmacol; 1994 Oct; 113(2):522-6. PubMed ID: 7530573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute infusion of nicotine potentiates norepinephrine-induced vasoconstriction in the hamster cheek pouch.
    Mayhan WG
    J Lab Clin Med; 1999 Jan; 133(1):48-54. PubMed ID: 10385481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of adenosine A2 alpha receptors inhibits mast cell degranulation and mast cell-dependent vasoconstriction.
    Fenster MS; Shepherd RK; Linden J; Duling BR
    Microcirculation; 2000 Apr; 7(2):129-35. PubMed ID: 10802855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles.
    Jackson WF; Boerman EM
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H667-H675. PubMed ID: 28667050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle.
    Segal SS; Welsh DG; Kurjiaka DT
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):283-91. PubMed ID: 10066941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine-induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor.
    Shepherd RK; Linden J; Duling BR
    Circ Res; 1996 Apr; 78(4):627-34. PubMed ID: 8635220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasoconstrictor effects of platelet-activating factor in the hamster cheek pouch microcirculation: dose-related relations and pathways of action.
    Dillon PK; Ritter AB; DurĂ¡n WN
    Circ Res; 1988 Apr; 62(4):722-31. PubMed ID: 2832096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inaccuracies in blood flow estimates in microvessels during arteriolar vasoconstriction.
    Proctor KG; Damon DN; Duling BR
    Microvasc Res; 1984 Jul; 28(1):23-36. PubMed ID: 6748957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleoside-induced arteriolar constriction: a mast cell-dependent response.
    Doyle MP; Linden J; Duling BR
    Am J Physiol; 1994 May; 266(5 Pt 2):H2042-50. PubMed ID: 8203602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of arterioles in skeletal muscle grafts to vasoactive agents.
    Burton HW; Faulkner JA
    Microvasc Res; 1987 Jul; 34(1):59-68. PubMed ID: 3309577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo microscopy of the cerebral microcirculation using neonatal allografts in hamsters.
    Joyner WL; Young R; Blank D; Eccleston-Joyner CA; Gilmore JP
    Circ Res; 1988 Oct; 63(4):758-66. PubMed ID: 2458860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct effect of atrial peptide on arterioles of the terminal microvasculature.
    Sarelius IH; Huxley VH
    Am J Physiol; 1990 May; 258(5 Pt 2):R1224-9. PubMed ID: 2140026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.