These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 33439453)
1. An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Singh LK; Pooja ; Garg H; Khanna M; Bhadoria RS Med Biol Eng Comput; 2021 Feb; 59(2):333-353. PubMed ID: 33439453 [TBL] [Abstract][Full Text] [Related]
2. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
3. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images. Haleem MS; Han L; Hemert Jv; Fleming A; Pasquale LR; Silva PS; Song BJ; Aiello LP J Med Syst; 2016 Jun; 40(6):132. PubMed ID: 27086033 [TBL] [Abstract][Full Text] [Related]
4. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. M S; Issac A; Dutta MK Int J Med Inform; 2018 Feb; 110():52-70. PubMed ID: 29331255 [TBL] [Abstract][Full Text] [Related]
5. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Issac A; Partha Sarathi M; Dutta MK Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351 [TBL] [Abstract][Full Text] [Related]
6. Automated diagnosis of glaucoma using digital fundus images. Nayak J; Acharya U R; Bhat PS; Shetty N; Lim TC J Med Syst; 2009 Oct; 33(5):337-46. PubMed ID: 19827259 [TBL] [Abstract][Full Text] [Related]
7. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Mvoulana A; Kachouri R; Akil M Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937 [TBL] [Abstract][Full Text] [Related]
8. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Mitra A; Banerjee PS; Roy S; Roy S; Setua SK Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079 [TBL] [Abstract][Full Text] [Related]
9. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Fuente-Arriaga JA; Felipe-Riverón EM; Garduño-Calderón E Comput Biol Med; 2014 Apr; 47():27-35. PubMed ID: 24530536 [TBL] [Abstract][Full Text] [Related]
10. Hybrid convolutional neural network optimized with an artificial algae algorithm for glaucoma screening using fundus images. Eswari MS; Balamurali S; Ramasamy LK J Int Med Res; 2024 Sep; 52(9):3000605241271766. PubMed ID: 39301801 [TBL] [Abstract][Full Text] [Related]
11. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880 [TBL] [Abstract][Full Text] [Related]
12. Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. Xu Y; Xu D; Lin S; Liu J; Cheng J; Cheung CY; Aung T; Wong TY Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):1-8. PubMed ID: 22003677 [TBL] [Abstract][Full Text] [Related]
13. Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images. Hatanaka Y; Nagahata Y; Muramatsu C; Okumura S; Ogohara K; Sawada A; Ishida K; Yamamoto T; Fujita H Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():126-9. PubMed ID: 25569913 [TBL] [Abstract][Full Text] [Related]
14. Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Maheshwari S; Pachori RB; Kanhangad V; Bhandary SV; Acharya UR Comput Biol Med; 2017 Sep; 88():142-149. PubMed ID: 28728059 [TBL] [Abstract][Full Text] [Related]
15. Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection. Ganesh Babu TR; Shenbaga Devi S; Venkatesh R Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Dec; 159(4):607-15. PubMed ID: 26498216 [TBL] [Abstract][Full Text] [Related]
16. Optic cup segmentation from fundus images for glaucoma diagnosis. Hu M; Zhu C; Li X; Xu Y Bioengineered; 2017 Jan; 8(1):21-28. PubMed ID: 27764542 [TBL] [Abstract][Full Text] [Related]
17. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images. Maheshwari S; Pachori RB; Acharya UR IEEE J Biomed Health Inform; 2017 May; 21(3):803-813. PubMed ID: 28113877 [TBL] [Abstract][Full Text] [Related]
18. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355 [TBL] [Abstract][Full Text] [Related]
19. Retinal Image Analysis for Ocular Disease Prediction Using Rule Mining Algorithms. Karthiyayini R; Shenbagavadivu N Interdiscip Sci; 2021 Sep; 13(3):451-462. PubMed ID: 32514844 [TBL] [Abstract][Full Text] [Related]
20. Automated determination of cup-to-disc ratio for classification of glaucomatous and normal eyes on stereo retinal fundus images. Muramatsu C; Nakagawa T; Sawada A; Hatanaka Y; Yamamoto T; Fujita H J Biomed Opt; 2011 Sep; 16(9):096009. PubMed ID: 21950923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]