BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33439775)

  • 1. Global changes to HepG2 cell metabolism in response to galactose treatment.
    Skolik RA; Solocinski J; Konkle ME; Chakraborty N; Menze MA
    Am J Physiol Cell Physiol; 2021 May; 320(5):C778-C793. PubMed ID: 33439775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.
    Figarola JL; Singhal J; Tompkins JD; Rogers GW; Warden C; Horne D; Riggs AD; Awasthi S; Singhal SS
    J Biol Chem; 2015 Dec; 290(51):30321-41. PubMed ID: 26534958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.
    Komulainen T; Lodge T; Hinttala R; Bolszak M; Pietilä M; Koivunen P; Hakkola J; Poulton J; Morten KJ; Uusimaa J
    Toxicology; 2015 May; 331():47-56. PubMed ID: 25745980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Catenin regulates hepatic mitochondrial function and energy balance in mice.
    Lehwald N; Tao GZ; Jang KY; Papandreou I; Liu B; Liu B; Pysz MA; Willmann JK; Knoefel WT; Denko NC; Sylvester KG
    Gastroenterology; 2012 Sep; 143(3):754-764. PubMed ID: 22684045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis.
    Kowalik MA; Guzzo G; Morandi A; Perra A; Menegon S; Masgras I; Trevisan E; Angioni MM; Fornari F; Quagliata L; Ledda-Columbano GM; Gramantieri L; Terracciano L; Giordano S; Chiarugi P; Rasola A; Columbano A
    Oncotarget; 2016 May; 7(22):32375-93. PubMed ID: 27070090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydroepiandrosterone-induced changes in mitochondrial proteins contribute to phenotypic alterations in hepatoma cells.
    Cheng ML; Chi LM; Wu PR; Ho HY
    Biochem Pharmacol; 2016 Oct; 117():20-34. PubMed ID: 27501919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cellular energetics by galactose and pioglitazone.
    Grimm D; Altamirano L; Paudel S; Welker L; Konkle ME; Chakraborty N; Menze MA
    Cell Tissue Res; 2017 Sep; 369(3):641-646. PubMed ID: 28776185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Galactose Be Converted to Glucose in HepG2 Cells? Improving the
    Xu Q; Liu L; Vu H; Kuhls M; Aslamkhan AG; Liaw A; Yu Y; Kaczor A; Ruth M; Wei C; Imredy J; Lebron J; Pearson K; Gonzalez R; Mitra K; Sistare FD
    Chem Res Toxicol; 2019 Aug; 32(8):1528-1544. PubMed ID: 31271030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-modulated mitochondria adaptation in tumor cells: a focus on ATP synthase and inhibitor Factor 1.
    Domenis R; Bisetto E; Rossi D; Comelli M; Mavelli I
    Int J Mol Sci; 2012; 13(2):1933-1950. PubMed ID: 22408432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles.
    Tataranni T; Agriesti F; Ruggieri V; Mazzoccoli C; Simeon V; Laurenzana I; Scrima R; Pazienza V; Capitanio N; Piccoli C
    Oncotarget; 2017 Jun; 8(25):41265-41281. PubMed ID: 28476035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).
    Brandt AP; Gozzi GJ; Pires Ado R; Martinez GR; Dos Santos Canuto AV; Echevarria A; Di Pietro A; Cadena SM
    Chem Biol Interact; 2016 Aug; 256():154-60. PubMed ID: 27417255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neglected foodborne mycotoxin Fusaric acid induces bioenergetic adaptations by switching energy metabolism from mitochondrial processes to glycolysis in a human liver (HepG2) cell line.
    Sheik Abdul N; Nagiah S; Chuturgoon AA
    Toxicol Lett; 2020 Jan; 318():74-85. PubMed ID: 31654802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment.
    Cassim S; Raymond VA; Dehbidi-Assadzadeh L; Lapierre P; Bilodeau M
    Cell Cycle; 2018; 17(7):903-916. PubMed ID: 29633904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic profiling of normal hepatocyte and hepatocellular carcinoma cells via
    Chen Y; Chen Z; Feng JH; Chen YB; Liao NS; Su Y; Zou CY
    Cell Biol Int; 2018 Apr; 42(4):425-434. PubMed ID: 29144590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of Glucotoxicity, Oxidative Stress, Apoptosis and Mitochondrial Dysfunction in HepG2 Cells by Palmitic Acid.
    Alnahdi A; John A; Raza H
    Nutrients; 2019 Aug; 11(9):. PubMed ID: 31443411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomic and transcriptomic profiling of hepatocellular carcinomas in Hras12V transgenic mice.
    Fan T; Rong Z; Dong J; Li J; Wang K; Wang X; Li H; Chen J; Wang F; Wang J; Wang A
    Cancer Med; 2017 Oct; 6(10):2370-2384. PubMed ID: 28941178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.
    Dykens JA; Jamieson J; Marroquin L; Nadanaciva S; Billis PA; Will Y
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):203-10. PubMed ID: 18817800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial UQCC3 Modulates Hypoxia Adaptation by Orchestrating OXPHOS and Glycolysis in Hepatocellular Carcinoma.
    Yang Y; Zhang G; Guo F; Li Q; Luo H; Shu Y; Shen Y; Gan J; Xu L; Yang H
    Cell Rep; 2020 Nov; 33(5):108340. PubMed ID: 33147459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2.
    Shen M; Xu M; Zhong F; Crist MC; Prior AB; Yang K; Allaire DM; Choueiry F; Zhu J; Shi H
    Cells; 2021 Feb; 10(2):. PubMed ID: 33672651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effects of the water-soluble total flavonoids from Isodon lophanthoides var.gerardianus (Benth.) H. Hara on apoptosis in HepG2 cell: Investigation of the most relevant mechanisms.
    Feng CP; Tang HM; Huang S; Hou SZ; Liang J; Huang W; Lai XP
    J Ethnopharmacol; 2016 Jul; 188():70-9. PubMed ID: 27132715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.