BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33439980)

  • 1. Transcriptomics analysis of the metabolic mechanisms of iron reduction induced by sulfate reduction mediated by sulfate-reducing bacteria.
    Li GX; Bao P
    FEMS Microbiol Ecol; 2021 Mar; 97(3):. PubMed ID: 33439980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin.
    Berg JS; Jézéquel D; Duverger A; Lamy D; Laberty-Robert C; Miot J
    PLoS One; 2019; 14(2):e0212787. PubMed ID: 30794698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling.
    Straub KL; Schink B
    Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM; Lentini CJ; Tang Y; Johnston DT; Wankel SD; Jardine PM
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.
    Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA
    PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic coupling of ferrihydrite transformation and associated arsenic desorption/redistribution mediated by sulfate-reducing bacteria.
    Zhou W; Zhu H; Hu S; Zhang B; Gao K; Dang Z; Liu C
    J Environ Sci (China); 2024 Jan; 135():39-50. PubMed ID: 37778813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phosphate on ferrihydrite transformation and the associated arsenic behavior mediated by sulfate-reducing bacterium.
    Gao K; Zhu H; Zhou W; Hu S; Zhang B; Dang Z; Liu C
    J Hazard Mater; 2023 Apr; 448():130863. PubMed ID: 36708694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.
    Saalfield SL; Bostick BC
    Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Deng Y; Zhang S; Ren M; Liu B; He J; Wu R; Dang Z; Guo C
    Sci Total Environ; 2024 Jan; 906():167690. PubMed ID: 37820819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.
    Zhou C; Zhou Y; Rittmann BE
    Water Res; 2017 Aug; 119():91-101. PubMed ID: 28436827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments.
    Zhou J; Xing J
    Water Res; 2021 Aug; 201():117354. PubMed ID: 34157573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction.
    Sim MS; Ono S; Bosak T
    Appl Environ Microbiol; 2012 Dec; 78(23):8368-76. PubMed ID: 23001667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium.
    Berg JS; Duverger A; Cordier L; Laberty-Robert C; Guyot F; Miot J
    Sci Rep; 2020 May; 10(1):8264. PubMed ID: 32427954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue.
    Phyo AK; Jia Y; Tan Q; Sun H; Liu Y; Dong B; Ruan R
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of sulfate-reducing bacteria in human periodontal pocket.
    Boopathy R; Robichaux M; LaFont D; Howell M
    Can J Microbiol; 2002 Dec; 48(12):1099-103. PubMed ID: 12619823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in dissimilatory sulfate reduction: From metabolic study to application.
    Qian Z; Tianwei H; Mackey HR; van Loosdrecht MCM; Guanghao C
    Water Res; 2019 Mar; 150():162-181. PubMed ID: 30508713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.