These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33439980)

  • 61. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sulfate-Reducing Bacteria in Patients Undergoing Fixed Orthodontic Treatment.
    Gopalakrishnan U; Murthy RT; Felicita AS; Alshehri A; Awadh W; Almalki A; Vinothkumar TS; Baeshen HA; Bhandi S; Kathir A; Samala A; Raj AT; Heboyan A; Patil S
    Int Dent J; 2023 Apr; 73(2):274-279. PubMed ID: 36180285
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria.
    Kushkevych I; Cejnar J; Treml J; Dordević D; Kollar P; Vítězová M
    Cells; 2020 Mar; 9(3):. PubMed ID: 32178484
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 65. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria.
    Haveman SA; Greene EA; Voordouw G
    Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reduction of adsorbed As(V) on nano-TiO
    Luo T; Ye L; Ding C; Yan J; Jing C
    Sci Total Environ; 2017 Nov; 598():839-846. PubMed ID: 28458201
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of sulfate reducing bacteria isolated from cooling towers.
    Sungur EI; Cotuk A
    Environ Monit Assess; 2005 May; 104(1-3):211-9. PubMed ID: 15931988
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.
    Correia RRS; Guimarães JRD
    Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.
    Chardin B; Giudici-Orticoni MT; De Luca G; Guigliarelli B; Bruschi M
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):315-21. PubMed ID: 12861426
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of sulfate absence and nitrate addition on bacterial community in a sulfidogenic bioreactor.
    Zhao YG; Wang AJ; Ren NQ
    J Hazard Mater; 2009 Dec; 172(2-3):1491-7. PubMed ID: 19735978
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A
    Water Res; 2017 Oct; 123():301-310. PubMed ID: 28675843
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phylogenetic diversity of sulphate-reducing Desulfovibrio associated with three South China Sea sponges.
    Zhang D; Sun W; Feng G; Zhang F; Anbuchezhian R; Li Z; Jiang Q
    Lett Appl Microbiol; 2015 May; 60(5):504-12. PubMed ID: 25661682
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.
    Zhou C; Vannela R; Hayes KF; Rittmann BE
    J Hazard Mater; 2014 May; 272():28-35. PubMed ID: 24675611
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modeling of heavy nitrate corrosion in anaerobe aquifer injection water biofilm: a case study in a flow rig.
    Drønen K; Roalkvam I; Beeder J; Torsvik T; Steen IH; Skauge A; Liengen T
    Environ Sci Technol; 2014; 48(15):8627-35. PubMed ID: 25020005
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic Activity of Sulfate-Reducing Bacteria from Rodents with Colitis.
    Kováč J; Vítězová M; Kushkevych I
    Open Med (Wars); 2018; 13():344-349. PubMed ID: 30191181
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.
    Cassarini C; Rene ER; Bhattarai S; Esposito G; Lens PNL
    Bioresour Technol; 2017 Sep; 240():214-222. PubMed ID: 28318933
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata.
    Dröge S; Limper U; Emtiazi F; Schönig I; Pavlus N; Drzyzga O; Fischer U; König H
    J Gen Appl Microbiol; 2005 Apr; 51(2):57-64. PubMed ID: 15942866
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.
    Guo J; Kang Y; Feng Y
    J Environ Manage; 2017 Dec; 203(Pt 1):278-285. PubMed ID: 28803152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.