These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 33439988)

  • 1. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis.
    Sassani M; Alix JJ; McDermott CJ; Baster K; Hoggard N; Wild JM; Mortiboys HJ; Shaw PJ; Wilkinson ID; Jenkins TM
    Brain; 2020 Dec; 143(12):3603-3618. PubMed ID: 33439988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prospective study to evaluate the impact of 31P-MRS to determinate mitochondrial dysfunction in skeletal muscle of ALS patients.
    Grehl T; Fischer S; Müller K; Malin JP; Zange J
    Amyotroph Lateral Scler; 2007 Feb; 8(1):4-8. PubMed ID: 17364428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy.
    Habets LE; Bartels B; Asselman FL; Hooijmans MT; van den Berg S; Nederveen AJ; van der Pol WL; Jeneson JAL
    Brain; 2022 May; 145(4):1422-1435. PubMed ID: 34788410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced oxidative phosphorylation and proton efflux suggest reduced capillary blood supply in skeletal muscle of patients with dermatomyositis and polymyositis: a quantitative 31P-magnetic resonance spectroscopy and MRI study.
    Cea G; Bendahan D; Manners D; Hilton-Jones D; Lodi R; Styles P; Taylor DJ
    Brain; 2002 Jul; 125(Pt 7):1635-45. PubMed ID: 12077012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study.
    Khushu S; Rana P; Sekhri T; Sripathy G; Tripathi RP
    Magn Reson Imaging; 2010 Jun; 28(5):683-9. PubMed ID: 20332062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis.
    Ryan TE; Erickson ML; Verma A; Chavez J; Rivner MH; Mccully KK
    Muscle Nerve; 2014 Nov; 50(5):767-74. PubMed ID: 24616062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure.
    van der Ent M; Jeneson JA; Remme WJ; Berger R; Ciampricotti R; Visser F
    Eur Heart J; 1998 Jan; 19(1):124-31. PubMed ID: 9503185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for inefficient contraction and abnormal mitochondrial activity in sarcopenia using magnetic resonance spectroscopy.
    Stephenson MC; Ho JXM; Migliavacca E; Kalimeri M; Karnani N; Banerji S; Totman JJ; Feige JN; Merchant RA; Tay SKH
    J Cachexia Sarcopenia Muscle; 2023 Jun; 14(3):1482-1494. PubMed ID: 37143433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease.
    Hattingen E; Magerkurth J; Pilatus U; Mozer A; Seifried C; Steinmetz H; Zanella F; Hilker R
    Brain; 2009 Dec; 132(Pt 12):3285-97. PubMed ID: 19952056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction in myotonic dystrophy type 1.
    Gramegna LL; Giannoccaro MP; Manners DN; Testa C; Zanigni S; Evangelisti S; Bianchini C; Oppi F; Poda R; Avoni P; Lodi R; Liguori R; Tonon C
    Neuromuscul Disord; 2018 Feb; 28(2):144-149. PubMed ID: 29289451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo.
    Kemp GJ; Roberts N; Bimson WE; Bakran A; Harris PL; Gilling-Smith GL; Brennan J; Rankin A; Frostick SP
    J Vasc Surg; 2001 Dec; 34(6):1103-10. PubMed ID: 11743568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease. Correlation with clinical and angiographic findings and comparison with healthy volunteers.
    Schunk K; Romaneehsen B; Mildenberger P; Kersjes W; Schadmand-Fischer S; Thelen M
    Invest Radiol; 1997 Nov; 32(11):651-9. PubMed ID: 9387051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between cervical cord 1H-magnetic resonance spectroscopy and clinoco-electromyographic profile in amyotrophic lateral sclerosis.
    Ikeda K; Murata K; Kawase Y; Kawabe K; Kano O; Yoshii Y; Takazawa T; Hirayama T; Iwasaki Y
    Muscle Nerve; 2013 Jan; 47(1):61-7. PubMed ID: 23042532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T.
    Valkovič L; Chmelík M; Just Kukurová I; Jakubová M; Kipfelsberger MC; Krumpolec P; Tušek Jelenc M; Bogner W; Meyerspeer M; Ukropec J; Frollo I; Ukropcová B; Trattnig S; Krššák M
    NMR Biomed; 2014 Nov; 27(11):1346-52. PubMed ID: 25199902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing bioenergetic compromise in autism spectrum disorder with 31P magnetic resonance spectroscopy: preliminary report.
    Golomb BA; Erickson LC; Scott-Van Zeeland AA; Koperski S; Haas RH; Wallace DC; Naviaux RK; Lincoln AJ; Reiner GE; Hamilton G
    J Child Neurol; 2014 Feb; 29(2):187-93. PubMed ID: 24141271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression.
    Harper DG; Joe EB; Jensen JE; Ravichandran C; Forester BP
    Int J Geriatr Psychiatry; 2016 Nov; 31(11):1241-1249. PubMed ID: 26891040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated imaging of [
    Ratai EM; Alshikho MJ; Zürcher NR; Loggia ML; Cebulla CL; Cernasov P; Reynolds B; Fish J; Seth R; Babu S; Paganoni S; Hooker JM; Atassi N
    Neuroimage Clin; 2018; 20():357-364. PubMed ID: 30112276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.