These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33440115)

  • 61. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.
    Zeno WF; Rystov A; Sasaki DY; Risbud SH; Longo ML
    Langmuir; 2016 May; 32(18):4688-97. PubMed ID: 27096947
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
    Hazarosova R; Momchilova A; Koumanov K; Petkova D; Staneva G
    J Fluoresc; 2015 Jul; 25(4):1037-43. PubMed ID: 26076930
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Membrane Shape Dynamics-Based Analysis of the Physical Properties of Giant Unilamellar Vesicles Prepared by Inverted Emulsion and Hydration Techniques.
    Morita M; Noda N
    Langmuir; 2021 Feb; 37(7):2268-2275. PubMed ID: 33555886
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs).
    Pereira DA; Silva AD; Martins PAT; Piedade AP; Martynowych D; Veysset D; Moreno MJ; Serpa C; Nelson KA; Arnaut LG
    Sci Rep; 2021 Feb; 11(1):2775. PubMed ID: 33531539
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photo-activated phase separation in giant vesicles made from different lipid mixtures.
    Haluska CK; Baptista MS; Fernandes AU; Schroder AP; Marques CM; Itri R
    Biochim Biophys Acta; 2012 Mar; 1818(3):666-72. PubMed ID: 22172805
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 69. n-Alcohol Length Governs Shift in L
    Cornell CE; McCarthy NLC; Levental KR; Levental I; Brooks NJ; Keller SL
    Biophys J; 2017 Sep; 113(6):1200-1211. PubMed ID: 28801104
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Membrane fusion of giant unilamellar vesicles of neutral phospholipid membranes induced by La3+.
    Tanaka T; Yamazaki M
    Langmuir; 2004 Jun; 20(13):5160-4. PubMed ID: 15986643
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading.
    Streicher P; Nassoy P; Bärmann M; Dif A; Marchi-Artzner V; Brochard-Wyart F; Spatz J; Bassereau P
    Biochim Biophys Acta; 2009 Oct; 1788(10):2291-300. PubMed ID: 19665445
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model.
    Zheng H; Jiménez-Flores R; Gragson D; Everett DW
    J Agric Food Chem; 2014 Apr; 62(14):3236-3243. PubMed ID: 24641452
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Straining soft colloids in aqueous nematic liquid crystals.
    Mushenheim PC; Pendery JS; Weibel DB; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5564-9. PubMed ID: 27140607
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.
    Sarmento MJ; Prieto M; Fernandes F
    Biochim Biophys Acta; 2012 Nov; 1818(11):2605-15. PubMed ID: 22664063
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microfluidic Deformability Study of an Innovative Blood Analogue Fluid Based on Giant Unilamellar Vesicles.
    Carvalho DAM; Rodrigues ARO; Faustino V; Pinho D; Castanheira EMS; Lima R
    J Funct Biomater; 2018 Dec; 9(4):. PubMed ID: 30518160
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ca-mediated electroformation of cell-sized lipid vesicles.
    Tao F; Yang P
    Sci Rep; 2015 May; 5():9839. PubMed ID: 25950604
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses.
    Emami S; Su WC; Purushothaman S; Ngassam VN; Parikh AN
    Biophys J; 2018 Nov; 115(10):1942-1955. PubMed ID: 30366629
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation.
    Mertins O; Dimova R
    Langmuir; 2013 Nov; 29(47):14552-9. PubMed ID: 24168435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.