These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33440120)

  • 1. Type II Binders Targeting the "GLR-Out" Conformation of the Pseudokinase STRADα.
    Smith RHB; Khan ZM; Ung PM; Scopton AP; Silber L; Mack SM; Real AM; Schlessinger A; Dar AC
    Biochemistry; 2021 Feb; 60(4):289-302. PubMed ID: 33440120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.
    Zeqiraj E; Filippi BM; Goldie S; Navratilova I; Boudeau J; Deak M; Alessi DR; van Aalten DM
    PLoS Biol; 2009 Jun; 7(6):e1000126. PubMed ID: 19513107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the structural dynamics of Liver kinase B1 (LKB1) by the binding of STe20 Related Adapterα (STRADα) and Mouse protein 25α (MO25α) co-activators.
    Rungsung I; Ramaswamy A
    J Biomol Struct Dyn; 2017 Apr; 35(5):1138-1152. PubMed ID: 27160967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the LKB1-STRAD-MO25 complex.
    Boudeau J; Scott JW; Resta N; Deak M; Kieloch A; Komander D; Hardie DG; Prescott AR; van Aalten DM; Alessi DR
    J Cell Sci; 2004 Dec; 117(Pt 26):6365-75. PubMed ID: 15561763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm.
    Boudeau J; Baas AF; Deak M; Morrice NA; Kieloch A; Schutkowski M; Prescott AR; Clevers HC; Alessi DR
    EMBO J; 2003 Oct; 22(19):5102-14. PubMed ID: 14517248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights.
    Paul A; Srinivasan N
    Proteins; 2020 Dec; 88(12):1620-1638. PubMed ID: 32667690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.
    Bailey FP; Byrne DP; Oruganty K; Eyers CE; Novotny CJ; Shokat KM; Kannan N; Eyers PA
    Biochem J; 2015 Apr; 467(1):47-62. PubMed ID: 25583260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric protein kinase regulation by pseudokinases: insights from STRAD.
    Rajakulendran T; Sicheri F
    Sci Signal; 2010 Mar; 3(111):pe8. PubMed ID: 20197543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL.
    Murphy JM; Lucet IS; Hildebrand JM; Tanzer MC; Young SN; Sharma P; Lessene G; Alexander WS; Babon JJ; Silke J; Czabotar PE
    Biochem J; 2014 Feb; 457(3):369-77. PubMed ID: 24219132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type II Inhibitors Targeting CDK2.
    Alexander LT; Möbitz H; Drueckes P; Savitsky P; Fedorov O; Elkins JM; Deane CM; Cowan-Jacob SW; Knapp S
    ACS Chem Biol; 2015 Sep; 10(9):2116-25. PubMed ID: 26158339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties.
    Murphy JM; Zhang Q; Young SN; Reese ML; Bailey FP; Eyers PA; Ungureanu D; Hammaren H; Silvennoinen O; Varghese LN; Chen K; Tripaydonis A; Jura N; Fukuda K; Qin J; Nimchuk Z; Mudgett MB; Elowe S; Gee CL; Liu L; Daly RJ; Manning G; Babon JJ; Lucet IS
    Biochem J; 2014 Jan; 457(2):323-34. PubMed ID: 24107129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).
    Min X; Ungureanu D; Maxwell S; Hammarén H; Thibault S; Hillert EK; Ayres M; Greenfield B; Eksterowicz J; Gabel C; Walker N; Silvennoinen O; Wang Z
    J Biol Chem; 2015 Nov; 290(45):27261-27270. PubMed ID: 26359499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing the origin and evolution of pseudokinases across the tree of life.
    Kwon A; Scott S; Taujale R; Yeung W; Kochut KJ; Eyers PA; Kannan N
    Sci Signal; 2019 Apr; 12(578):. PubMed ID: 31015289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.