BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33440161)

  • 1. RAD52 Adjusts Repair of Single-Strand Breaks via Reducing DNA-Damage-Promoted XRCC1/LIG3α Co-localization.
    Wang J; Oh YT; Li Z; Dou J; Tang S; Wang X; Wang H; Takeda S; Wang Y
    Cell Rep; 2021 Jan; 34(2):108625. PubMed ID: 33440161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest.
    Niu Y; Zhang X; Zheng Y; Zhang R
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):311-319. PubMed ID: 23708312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication Protein A Phosphorylation Facilitates RAD52-Dependent Homologous Recombination in BRCA-Deficient Cells.
    Carley AC; Jalan M; Subramanyam S; Roy R; Borgstahl GEO; Powell SN
    Mol Cell Biol; 2022 Feb; 42(2):e0052421. PubMed ID: 34928169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose).
    Wei L; Nakajima S; Hsieh CL; Kanno S; Masutani M; Levine AS; Yasui A; Lan L
    J Cell Sci; 2013 Oct; 126(Pt 19):4414-23. PubMed ID: 23868975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XRCC1 protein; Form and function.
    Caldecott KW
    DNA Repair (Amst); 2019 Sep; 81():102664. PubMed ID: 31324530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
    Leppard JB; Dong Z; Mackey ZB; Tomkinson AE
    Mol Cell Biol; 2003 Aug; 23(16):5919-27. PubMed ID: 12897160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair.
    Taylor RM; Moore DJ; Whitehouse J; Johnson P; Caldecott KW
    Mol Cell Biol; 2000 Jan; 20(2):735-40. PubMed ID: 10611252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks.
    Tan J; Duan M; Yadav T; Phoon L; Wang X; Zhang JM; Zou L; Lan L
    Nucleic Acids Res; 2020 Feb; 48(3):1285-1300. PubMed ID: 31777915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1.
    Polo LM; Xu Y; Hornyak P; Garces F; Zeng Z; Hailstone R; Matthews SJ; Caldecott KW; Oliver AW; Pearl LH
    Cell Rep; 2019 Jan; 26(3):573-581.e5. PubMed ID: 30650352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APTX acts in DNA double-strand break repair in a manner distinct from XRCC4.
    Imamura R; Saito M; Shimada M; Kobayashi J; Ishiai M; Matsumoto Y
    J Radiat Res; 2023 May; 64(3):485-495. PubMed ID: 36940705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic regulatory interactions of rad51, rad52, and replication protein-a in recombination intermediates.
    Sugiyama T; Kantake N
    J Mol Biol; 2009 Jul; 390(1):45-55. PubMed ID: 19445949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Damage and Repair in Migraine: Oxidative Stress and Beyond.
    Fila M; Jablkowska A; Pawlowska E; Blasiak J
    Neuroscientist; 2023 Jun; 29(3):277-286. PubMed ID: 35658694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rad51 protein controls Rad52-mediated DNA annealing.
    Wu Y; Kantake N; Sugiyama T; Kowalczykowski SC
    J Biol Chem; 2008 May; 283(21):14883-92. PubMed ID: 18337252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair.
    Whitehouse CJ; Taylor RM; Thistlethwaite A; Zhang H; Karimi-Busheri F; Lasko DD; Weinfeld M; Caldecott KW
    Cell; 2001 Jan; 104(1):107-17. PubMed ID: 11163244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian DNA ligases; roles in maintaining genome integrity.
    Sallmyr A; Bhandari SK; Naila T; Tomkinson AE
    J Mol Biol; 2024 Jan; 436(1):168276. PubMed ID: 37714297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA 3'-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress.
    Breslin C; Caldecott KW
    Mol Cell Biol; 2009 Sep; 29(17):4653-62. PubMed ID: 19546231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disconnecting XRCC1 and DNA ligase III.
    Katyal S; McKinnon PJ
    Cell Cycle; 2011 Jul; 10(14):2269-75. PubMed ID: 21636980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.
    Audebert M; Salles B; Calsou P
    J Biol Chem; 2004 Dec; 279(53):55117-26. PubMed ID: 15498778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of the RNA-binding and RNA-DNA strand exchange activities of the human RAD52 protein.
    Tsuchiya R; Saotome M; Kinoshita C; Kamoi K; Kagawa W
    J Biochem; 2023 Jun; 174(1):59-69. PubMed ID: 36811351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.