These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33440355)

  • 1. Selective multi-wavelength infrared emission by stacked gap-plasmon thermal emitters.
    Hsiao HH; Xu BT
    Nanotechnology; 2021 Apr; 32(16):165201. PubMed ID: 33440355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance.
    Park SJ; Kim YB; Moon YJ; Cho JW; Kim SK
    Opt Express; 2020 May; 28(10):15472-15481. PubMed ID: 32403574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Express; 2018 Mar; 26(5):5616-5631. PubMed ID: 29529764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-quality factor mid-infrared absorber based on all-dielectric metasurfaces.
    Yang F; Liang Z; Meng D; Shi X; Qin Z; Dai R; Sun C; Ren Y; Feng J; Liu W
    Opt Express; 2023 Feb; 31(4):5747-5756. PubMed ID: 36823847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-phonon coupling between mid-infrared chiral metasurfaces and molecular vibrations.
    Mahmud MS; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Express; 2020 Jul; 28(14):21192-21201. PubMed ID: 32680164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators.
    Roberts AS; Chirumamilla M; Thilsing-Hansen K; Pedersen K; Bozhevolnyi SI
    Opt Express; 2015 Sep; 23(19):A1111-9. PubMed ID: 26406741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control.
    He M; Nolen JR; Nordlander J; Cleri A; McIlwaine NS; Tang Y; Lu G; Folland TG; Landman BA; Maria JP; Caldwell JD
    Nat Mater; 2021 Dec; 20(12):1663-1669. PubMed ID: 34675374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology.
    Park C; Kim J; Hahn JW
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43090-43097. PubMed ID: 32862637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect Thermal Emission by Nanoscale Transmission Line Resonators.
    Liu B; Gong W; Yu B; Li P; Shen S
    Nano Lett; 2017 Feb; 17(2):666-672. PubMed ID: 28045267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Black phosphorus-based anisotropic absorption structure in the mid-infrared.
    Liu T; Jiang X; Zhou C; Xiao S
    Opt Express; 2019 Sep; 27(20):27618-27627. PubMed ID: 31684526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon photonic crystal thermal emitter at near-infrared wavelengths.
    O'Regan BJ; Wang Y; Krauss TF
    Sci Rep; 2015 Aug; 5():13415. PubMed ID: 26293111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.
    Ogawa S; Kimata M
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Densely-tiled metal-insulator-metal metamaterial resonators with quasi- monochromatic thermal emission.
    Ito K; Toshiyoshi H; Iizuka H
    Opt Express; 2016 Jun; 24(12):12803-11. PubMed ID: 27410299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacked Dual-Band Quantum Well Infrared Photodetector Based on Double-Layer Gold Disk Enhanced Local Light Field.
    Liu C; Zuo X; Xu S; Wang L; Xiong D
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material.
    Du K; Cai L; Luo H; Lu Y; Tian J; Qu Y; Ghosh P; Lyu Y; Cheng Z; Qiu M; Li Q
    Nanoscale; 2018 Mar; 10(9):4415-4420. PubMed ID: 29451573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management.
    Cao J; Liu X; Chang Q; Yang Z; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Dec; 22(48):28012-28020. PubMed ID: 33300901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption.
    Zhou J; Liu Z; Liu X; Pan P; Zhan X; Liu Z
    Nanotechnology; 2020 Sep; 31(37):375201. PubMed ID: 32485701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy.
    Chen K; Adato R; Altug H
    ACS Nano; 2012 Sep; 6(9):7998-8006. PubMed ID: 22920565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.