These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33440367)
1. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Fu L; Zhang L; Zhang X; Chen L; Cai Q; Yang X Biomed Mater; 2021 Feb; 16(2):022006. PubMed ID: 33440367 [TBL] [Abstract][Full Text] [Related]
2. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering. Taheem DK; Jell G; Gentleman E Tissue Eng Part B Rev; 2020 Apr; 26(2):105-115. PubMed ID: 31774026 [TBL] [Abstract][Full Text] [Related]
3. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408 [TBL] [Abstract][Full Text] [Related]
4. Effects of in vitro low oxygen tension preconditioning of buccal fat pad stem cells on in Vivo articular cartilage tissue repair. Dehghani Nazhvani F; Mohammadi Amirabad L; Azari A; Namazi H; Hosseinzadeh S; Samanipour R; Khojasteh A; Golchin A; Hashemi S Life Sci; 2021 Sep; 280():119728. PubMed ID: 34144057 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Hu X; Xu J; Li W; Li L; Parungao R; Wang Y; Zheng S; Nie Y; Liu T; Song K Appl Biochem Biotechnol; 2020 Jun; 191(2):785-809. PubMed ID: 31863349 [TBL] [Abstract][Full Text] [Related]
6. Engineering of gradient osteochondral tissue: From nature to lab. Ansari S; Khorshidi S; Karkhaneh A Acta Biomater; 2019 Mar; 87():41-54. PubMed ID: 30721785 [TBL] [Abstract][Full Text] [Related]
7. The effect of decellularized cartilage matrix scaffolds combined with endometrial stem cell-derived osteocytes on osteochondral tissue engineering in rats. Bahrami N; Bordbar S; Hasanzadeh E; Goodarzi A; Ai A; Mohamadnia A In Vitro Cell Dev Biol Anim; 2022 Jun; 58(6):480-490. PubMed ID: 35727496 [TBL] [Abstract][Full Text] [Related]
9. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021 [TBL] [Abstract][Full Text] [Related]
10. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Chen T; Bai J; Tian J; Huang P; Zheng H; Wang J Colloids Surf B Biointerfaces; 2018 Jul; 167():354-363. PubMed ID: 29689491 [TBL] [Abstract][Full Text] [Related]
11. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model. Qi Y; Zhang W; Li G; Niu L; Zhang Y; Tang R; Feng G FASEB J; 2020 Aug; 34(8):11115-11132. PubMed ID: 32627881 [TBL] [Abstract][Full Text] [Related]
12. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Wang Z; Han L; Sun T; Ma J; Sun S; Ma L; Wu B Acta Biomater; 2020 Dec; 118():54-68. PubMed ID: 33068746 [TBL] [Abstract][Full Text] [Related]
13. Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds. Wang HC; Lin TH; Hsu CC; Yeh ML Cells; 2021 Dec; 10(12):. PubMed ID: 34944042 [TBL] [Abstract][Full Text] [Related]
14. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Yin H; Wang Y; Sun X; Cui G; Sun Z; Chen P; Xu Y; Yuan X; Meng H; Xu W; Wang A; Guo Q; Lu S; Peng J Acta Biomater; 2018 Sep; 77():127-141. PubMed ID: 30030172 [TBL] [Abstract][Full Text] [Related]
15. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Zhang N; Wang Y; Zhang J; Guo J; He J Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084 [TBL] [Abstract][Full Text] [Related]
16. Advances of nanotechnology in osteochondral regeneration. Deng C; Xu C; Zhou Q; Cheng Y Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1576. PubMed ID: 31329375 [TBL] [Abstract][Full Text] [Related]
17. Progress in Osteochondral Regeneration with Engineering Strategies. Gao H; Pan Q; Dong W; Yao Y Ann Biomed Eng; 2022 Oct; 50(10):1232-1242. PubMed ID: 35994165 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
19. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
20. Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. de Vries-van Melle ML; Narcisi R; Kops N; Koevoet WJ; Bos PK; Murphy JM; Verhaar JA; van der Kraan PM; van Osch GJ Tissue Eng Part A; 2014 Jan; 20(1-2):23-33. PubMed ID: 23980750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]