BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33440473)

  • 1. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks.
    Lim KS; Schon BS; Mekhileri NV; Brown GCJ; Chia CM; Prabakar S; Hooper GJ; Woodfield TBF
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1752-1762. PubMed ID: 33440473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth.
    Lim KS; Klotz BJ; Lindberg GCJ; Melchels FPW; Hooper GJ; Malda J; Gawlitta D; Woodfield TBF
    Macromol Biosci; 2019 Jun; 19(6):e1900098. PubMed ID: 31026127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Photoinitiator on Precursory Stability and Curing Depth of Thiol-Ene Clickable Gelatin.
    Yang KH; Lindberg G; Soliman B; Lim K; Woodfield T; Narayan RJ
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34198796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking.
    Khanmohammadi M; Nemati S; Ai J; Khademi F
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109808. PubMed ID: 31349492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light photocrosslinking of sugar beet pectin for 3D bioprinting applications.
    Mubarok W; Elvitigala KCML; Kotani T; Sakai S
    Carbohydr Polym; 2023 Sep; 316():121026. PubMed ID: 37321724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry.
    Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE
    Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro.
    Bryant SJ; Nuttelman CR; Anseth KS
    J Biomater Sci Polym Ed; 2000; 11(5):439-57. PubMed ID: 10896041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of alginate-based hydrogel microparticle via ruthenium-catalyzed photocrosslinking.
    Noori F; Jafarbeigloo HRG; Jirehnezhadyan M; Mohajer M; Khanmohammadi M; Goodarzi A
    J Biomed Mater Res A; 2024 Mar; 112(3):348-358. PubMed ID: 37880934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies.
    Bertlein S; Brown G; Lim KS; Jungst T; Boeck T; Blunk T; Tessmar J; Hooper GJ; Woodfield TBF; Groll J
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29044686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach.
    Han WT; Jang T; Chen S; Chong LSH; Jung HD; Song J
    Biomater Sci; 2019 Dec; 8(1):450-461. PubMed ID: 31748767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
    Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs.
    Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW
    J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.
    Kang LH; Armstrong PA; Lee LJ; Duan B; Kang KH; Butcher JT
    Ann Biomed Eng; 2017 Feb; 45(2):360-377. PubMed ID: 27106636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.
    Sakai S; Ohi H; Hotta T; Kamei H; Taya M
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.