These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33440494)

  • 1. Scalable Production of Genetically Engineered Nanofibrous Macroscopic Materials via Filtration.
    Dorval Courchesne NM; Duraj-Thatte A; Tay PKR; Nguyen PQ; Joshi NS
    ACS Biomater Sci Eng; 2017 May; 3(5):733-741. PubMed ID: 33440494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic engineering of conductive curli protein films.
    Dorval Courchesne NM; DeBenedictis EP; Tresback J; Kim JJ; Duraj-Thatte A; Zanuy D; Keten S; Joshi NS
    Nanotechnology; 2018 Nov; 29(45):454002. PubMed ID: 30152795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification.
    Reichhardt C; McCrate OA; Zhou X; Lee J; Thongsomboon W; Cegelski L
    Anal Bioanal Chem; 2016 Nov; 408(27):7709-7717. PubMed ID: 27580606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable biofilm-based materials from engineered curli nanofibres.
    Nguyen PQ; Botyanszki Z; Tay PK; Joshi NS
    Nat Commun; 2014 Sep; 5():4945. PubMed ID: 25229329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically Programmable Self-Regenerating Bacterial Hydrogels.
    Duraj-Thatte AM; Courchesne ND; Praveschotinunt P; Rutledge J; Lee Y; Karp JM; Joshi NS
    Adv Mater; 2019 Oct; 31(40):e1901826. PubMed ID: 31402514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endowing textiles with self-repairing ability through the fabrication of composites with a bacterial biofilm.
    Cai A; Abdali Z; Saldanha DJ; Aminzare M; Dorval Courchesne NM
    Sci Rep; 2023 Jul; 13(1):11389. PubMed ID: 37452128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers.
    Reichhardt C; Jacobson AN; Maher MC; Uang J; McCrate OA; Eckart M; Cegelski L
    PLoS One; 2015; 10(10):e0140388. PubMed ID: 26485271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial functional amyloids: Order from disorder.
    Jain N; Chapman MR
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):954-960. PubMed ID: 31195143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.
    Wang X; Pu J; An B; Li Y; Shang Y; Ning Z; Liu Y; Ba F; Zhang J; Zhong C
    Adv Mater; 2018 Apr; 30(16):e1705968. PubMed ID: 29516606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Amyloid Curli Fibers-Alginate Nanocomposite Hydrogels with Enhanced Stiffness.
    Axpe E; Duraj-Thatte A; Chang Y; Kaimaki DM; Sanchez-Sanchez A; Caliskan HB; Dorval Courchesne NM; Joshi NS
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2100-2105. PubMed ID: 33435033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.
    Badrossamay MR; Balachandran K; Capulli AK; Golecki HM; Agarwal A; Goss JA; Kim H; Shin K; Parker KK
    Biomaterials; 2014 Mar; 35(10):3188-97. PubMed ID: 24456606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
    Schmieden DT; Basalo Vázquez SJ; Sangüesa H; van der Does M; Idema T; Meyer AS
    ACS Synth Biol; 2018 May; 7(5):1328-1337. PubMed ID: 29690761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Logic Gates Enable Patterning of Amyloid Nanofibers.
    Kalyoncu E; Ahan RE; Ozcelik CE; Seker UOS
    Adv Mater; 2019 Sep; 31(39):e1902888. PubMed ID: 31402516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curli biogenesis and function.
    Barnhart MM; Chapman MR
    Annu Rev Microbiol; 2006; 60():131-47. PubMed ID: 16704339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli.
    Rapsinski GJ; Wynosky-Dolfi MA; Oppong GO; Tursi SA; Wilson RP; Brodsky IE; Tükel Ç
    Infect Immun; 2015 Feb; 83(2):693-701. PubMed ID: 25422268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σ(E) -dependent sRNA RybB.
    Serra DO; Mika F; Richter AM; Hengge R
    Mol Microbiol; 2016 Jul; 101(1):136-51. PubMed ID: 26992034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications.
    Beachley V; Katsanevakis E; Zhang N; Wen X
    Adv Healthc Mater; 2013 Feb; 2(2):343-51. PubMed ID: 23184622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic Curli Intermediates Form during
    Nicastro LK; Tursi SA; Le LS; Miller AL; Efimov A; Buttaro B; Tam V; Tükel Ç
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31182496
    [No Abstract]   [Full Text] [Related]  

  • 20. Tuning Functional Amyloid Formation Through Disulfide Engineering.
    Balistreri A; Kahana E; Janakiraman S; Chapman MR
    Front Microbiol; 2020; 11():944. PubMed ID: 32528432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.