BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33440506)

  • 1. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
    Yang F; Tadepalli V; Wiley BJ
    ACS Biomater Sci Eng; 2017 May; 3(5):863-869. PubMed ID: 33440506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications.
    Deng Z; Qian T; Hang F
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method.
    Gong D; Lin Q; Shao Z; Chen X; Yang Y
    RSC Adv; 2020 Jul; 10(45):27225-27234. PubMed ID: 35515806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties.
    Cristovão AF; Sousa D; Silvestre F; Ropio I; Gaspar A; Henriques C; Velhinho A; Baptista AC; Faustino M; Ferreira I
    3D Print Med; 2019 Aug; 5(1):12. PubMed ID: 31376049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment.
    Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X
    Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness.
    Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
    Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL
    J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gel microparticle-based self-thickening strategy for 3D printing high-modulus hydrogels skeleton cushioned with PNAGA hydrogel mimicking anisotropic mechanics of meniscus.
    Xu Z; Zhang Q; Fan C; Xiao M; Yang R; Yao Y; Wu Y; Nie X; Wang H; Liu W
    Bioact Mater; 2023 Aug; 26():64-76. PubMed ID: 36895264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Network Hydrogels that Mimic the Modulus, Strength, and Lubricity of Cartilage.
    Means AK; Shrode CS; Whitney LV; Ehrhardt DA; Grunlan MA
    Biomacromolecules; 2019 May; 20(5):2034-2042. PubMed ID: 31009565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel.
    Hu C; Haider MS; Hahn L; Yang M; Luxenhofer R
    J Mater Chem B; 2021 Jun; 9(22):4535-4545. PubMed ID: 34037651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.
    Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y
    Small; 2024 Jul; ():e2403052. PubMed ID: 38970551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.
    Wang X; Wei C; Cao B; Jiang L; Hou Y; Chang J
    ACS Appl Mater Interfaces; 2018 May; 10(21):18338-18350. PubMed ID: 29718655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 20. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing.
    Guo Z; Ma C; Xie W; Tang A; Liu W
    Carbohydr Polym; 2023 Sep; 315():121006. PubMed ID: 37230626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.