These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33440530)
1. Deployment of a Bulk Metallic Glass-Based Self-Expandable Stent in a Patient-Specific Descending Aorta. Praveen Kumar G; Jafary-Zadeh M; Cui F ACS Biomater Sci Eng; 2016 Nov; 2(11):1951-1958. PubMed ID: 33440530 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of using bulk metallic glass for self-expandable stent applications. Praveen Kumar G; Jafary-Zadeh M; Tavakoli R; Cui F J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1874-1882. PubMed ID: 27239801 [TBL] [Abstract][Full Text] [Related]
3. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Huang L; Pu C; Fisher RK; Mountain DJ; Gao Y; Liaw PK; Zhang W; He W Acta Biomater; 2015 Oct; 25():356-68. PubMed ID: 26162585 [TBL] [Abstract][Full Text] [Related]
4. A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Jafary-Zadeh M; Praveen Kumar G; Branicio PS; Seifi M; Lewandowski JJ; Cui F J Funct Biomater; 2018 Feb; 9(1):. PubMed ID: 29495521 [TBL] [Abstract][Full Text] [Related]
5. Nanoglass-based balloon expandable stents. Kumar GP; Yuan S; Cui F; Branicio PS; Jafary-Zadeh M J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):73-79. PubMed ID: 30895727 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in bulk metallic glasses for biomedical applications. Li HF; Zheng YF Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349 [TBL] [Abstract][Full Text] [Related]
7. Nitinol Stent Oversizing in Patients Undergoing Popliteal Artery Revascularization: A Finite Element Study. Gökgöl C; Diehm N; Nezami FR; Büchler P Ann Biomed Eng; 2015 Dec; 43(12):2868-80. PubMed ID: 26101031 [TBL] [Abstract][Full Text] [Related]
8. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium. Cabrera MS; Oomens CW; Baaijens FP J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851 [TBL] [Abstract][Full Text] [Related]
9. Finite element analysis of NiTi self-expandable heart valve stent. Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047 [TBL] [Abstract][Full Text] [Related]
10. Biosafety, stability, and osteogenic activity of novel implants made of Zr Ida H; Seiryu M; Takeshita N; Iwasaki M; Yokoyama Y; Tsutsumi Y; Ikeda E; Sasaki S; Miyashita S; Sasaki S; Fukunaga T; Deguchi T; Takano-Yamamoto T Acta Biomater; 2018 Jul; 74():505-517. PubMed ID: 29772348 [TBL] [Abstract][Full Text] [Related]
11. Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Chen S; Wang J; Xia L; Wu Y Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266770 [TBL] [Abstract][Full Text] [Related]
12. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Gökgöl C; Diehm N; Büchler P Ann Biomed Eng; 2017 Jun; 45(6):1420-1433. PubMed ID: 28150055 [TBL] [Abstract][Full Text] [Related]
13. Study design and rationale of the 'Balloon-Expandable Cobalt Chromium SCUBA Stent versus Self-Expandable COMPLETE-SE Nitinol Stent for the Atherosclerotic ILIAC Arterial Disease (SENS-ILIAC Trial) Trial': study protocol for a randomized controlled trial. Choi WG; Rha SW; Choi CU; Kim EJ; Oh DJ; Cho YH; Park SH; Lee SJ; Hur AY; Ko YG; Park SM; Kim KC; Kim JH; Kim MW; Kim SM; Bae JH; Bong JM; Kang WY; Seo JB; Jung WY; Cho JH; Kim do H; Ahn JH; Kim SH; Jang JY; Trials; 2016 Jun; 17(1):302. PubMed ID: 27344435 [TBL] [Abstract][Full Text] [Related]
14. Design and evaluation of the crimping of a hooked self-expandable caval valve stent for the treatment of tricuspid regurgitation. Praveen Kumar G; Liang Leo H; Cui F Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):533-546. PubMed ID: 30773049 [TBL] [Abstract][Full Text] [Related]
15. Midterm to long-term safety and efficacy of self-expandable nitinol stent implantation for coarctation of aorta in adults. Haji Zeinali AM; Sadeghian M; Qureshi SA; Ghazi P Catheter Cardiovasc Interv; 2017 Sep; 90(3):425-431. PubMed ID: 28707350 [TBL] [Abstract][Full Text] [Related]
16. A comparison of four stent designs on arterial injury, cellular proliferation, neointima formation, and arterial dimensions in an experimental porcine model. Taylor AJ; Gorman PD; Kenwood B; Hudak C; Tashko G; Virmani R Catheter Cardiovasc Interv; 2001 Jul; 53(3):420-5. PubMed ID: 11458427 [TBL] [Abstract][Full Text] [Related]
17. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Sun K; Fu R; Liu XW; Xu LM; Wang G; Chen SY; Zhai QJ; Pauly S Bioact Mater; 2022 Feb; 8():253-266. PubMed ID: 34541400 [TBL] [Abstract][Full Text] [Related]
18. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Li H; He W; Pang S; Liaw PK; Zhang T Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():632-641. PubMed ID: 27524063 [TBL] [Abstract][Full Text] [Related]
19. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions. Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572 [TBL] [Abstract][Full Text] [Related]
20. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements? Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]