These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33440575)
1. Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. Davenport Huyer L; Zhang B; Korolj A; Montgomery M; Drecun S; Conant G; Zhao Y; Reis L; Radisic M ACS Biomater Sci Eng; 2016 May; 2(5):780-788. PubMed ID: 33440575 [TBL] [Abstract][Full Text] [Related]
2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism. Tran RT; Thevenot P; Gyawali D; Chiao JC; Tang L; Yang J Soft Matter; 2010 Jan; 6(11):2449-2461. PubMed ID: 22162975 [TBL] [Abstract][Full Text] [Related]
4. Method for the Fabrication of Elastomeric Polyester Scaffolds for Tissue Engineering and Minimally Invasive Delivery. Montgomery M; Davenport Huyer L; Bannerman D; Mohammadi MH; Conant G; Radisic M ACS Biomater Sci Eng; 2018 Nov; 4(11):3691-3703. PubMed ID: 33429599 [TBL] [Abstract][Full Text] [Related]
5. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering. Zhang Y; Tran RT; Gyawali D; Yang J Int J Biomater Res Eng; 2011 Jan; 1(1):18-31. PubMed ID: 23565318 [TBL] [Abstract][Full Text] [Related]
6. One-Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs. Davenport Huyer L; Bannerman AD; Wang Y; Savoji H; Knee-Walden EJ; Brissenden A; Yee B; Shoaib M; Bobicki E; Amsden BG; Radisic M Adv Healthc Mater; 2019 Aug; 8(16):e1900245. PubMed ID: 31313890 [TBL] [Abstract][Full Text] [Related]
7. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Tevlek A; Hosseinian P; Ogutcu C; Turk M; Aydin HM Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():316-324. PubMed ID: 28024592 [TBL] [Abstract][Full Text] [Related]
8. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications. Dargaville BL; Vaquette C; Peng H; Rasoul F; Chau YQ; Cooper-White JJ; Campbell JH; Whittaker AK Biomacromolecules; 2011 Nov; 12(11):3856-69. PubMed ID: 21999900 [TBL] [Abstract][Full Text] [Related]
9. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
10. Macroporous photocrosslinked elastomer scaffolds containing microposity: preparation and in vitro degradation properties. Ilagan BG; Amsden BG J Biomed Mater Res A; 2010 Apr; 93(1):211-8. PubMed ID: 19544482 [TBL] [Abstract][Full Text] [Related]
11. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. Ding X; Zhang Z; Kluka C; Asim S; Manuel J; Lee BP; Jiang J; Heiden PA; Heldt CL; Rizwan M ACS Appl Bio Mater; 2024 Feb; 7(2):863-878. PubMed ID: 38207114 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Gossla E; Tonndorf R; Bernhardt A; Kirsten M; Hund RD; Aibibu D; Cherif C; Gelinsky M Acta Biomater; 2016 Oct; 44():267-76. PubMed ID: 27544815 [TBL] [Abstract][Full Text] [Related]
13. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. Mitsak AG; Dunn AM; Hollister SJ J Mech Behav Biomed Mater; 2012 Jul; 11():3-15. PubMed ID: 22658150 [TBL] [Abstract][Full Text] [Related]
14. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
15. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Amsden BG; Misra G; Gu F; Younes HM Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066 [TBL] [Abstract][Full Text] [Related]
18. Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry. Ding X; Gao J; Acharya AP; Wu YL; Little SR; Wang Y ACS Biomater Sci Eng; 2020 Feb; 6(2):852-864. PubMed ID: 33464838 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904 [TBL] [Abstract][Full Text] [Related]
20. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]