These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3344073)

  • 1. Somatosensory evoked potential monitoring accurately predicts hemi-spinal cord damage: a case report.
    Friedman WA; Richards R
    Neurosurgery; 1988 Jan; 22(1 Pt 1):140-2. PubMed ID: 3344073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological detection of impending spinal cord injury during scoliosis surgery.
    Schwartz DM; Auerbach JD; Dormans JP; Flynn J; Drummond DS; Bowe JA; Laufer S; Shah SA; Bowen JR; Pizzutillo PD; Jones KJ; Drummond DS
    J Bone Joint Surg Am; 2007 Nov; 89(11):2440-9. PubMed ID: 17974887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invasive methods of somatosensory evoked potential monitoring.
    Dinner DS; Lüders H; Lesser RP; Morris HH
    J Clin Neurophysiol; 1986 Apr; 3(2):113-30. PubMed ID: 3084558
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficacy of intraoperative neurologic monitoring in surgery involving a vertical expandable prosthetic titanium rib for early-onset spinal deformity.
    Skaggs DL; Choi PD; Rice C; Emans J; Song KM; Smith JT; Campbell RM
    J Bone Joint Surg Am; 2009 Jul; 91(7):1657-63. PubMed ID: 19571088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Intraoperative neurophysiological monitoring of the spinal cord].
    Matsumoto M; Ishida K
    Masui; 2012 Jan; 61(1):16-24. PubMed ID: 22338856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous effect of increasing spinal cord perfusion pressure on sensory evoked potentials recorded from acutely injured human spinal cord.
    Gallagher MJ; López DM; Sheen HV; Hogg FRA; Zoumprouli A; Papadopoulos MC; Saadoun S
    J Crit Care; 2020 Apr; 56():145-151. PubMed ID: 31901650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats.
    Huang Z; Li R; Liu J; Huang Z; Hu Y; Wu X; Zhu Q
    Neurosci Lett; 2018 Jan; 664():116-122. PubMed ID: 29138091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different Time-Frequency Distribution Patterns of Somatosensory Evoked Potentials in Dual- and Single-Level Spinal Cord Compression.
    Cui H; Wang Y; Li G; Huang Y; Hu Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1052-1059. PubMed ID: 35417350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of evoked potentials during spinal surgery due to spinal cord hemorrhage.
    Shukla R; Docherty TB; Jackson RK; Weller RO; Sedgwick EM
    Ann Neurol; 1988 Aug; 24(2):272-5. PubMed ID: 3178183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Cervical Myelopathy Location From Somatosensory Evoked Potentials Using Random Forests Classification.
    Cui H; Wang Y; Li G; Huang Y; Hu Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2254-2262. PubMed ID: 31603823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-frequency analysis of somatosensory evoked potentials for intraoperative spinal cord monitoring.
    Hu Y; Liu H; Luk KD
    J Clin Neurophysiol; 2011 Oct; 28(5):504-11. PubMed ID: 21946365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury].
    Hou Y; Nie L; Liu LH; Shao J; Yuan YJ
    Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(11):773-7. PubMed ID: 18683688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paraspinal stimulation to elicit somatosensory evoked potentials: an approach to physiological localization of spinal lesions.
    Goodridge A; Eisen A; Hoirch M
    Electroencephalogr Clin Neurophysiol; 1987 Jul; 68(4):268-76. PubMed ID: 2439306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posterior spinal fusion complicated by posterior column injury. A case report of a false-negative wake-up test.
    Ben-David B; Taylor PD; Haller GS
    Spine (Phila Pa 1976); 1987; 12(6):540-3. PubMed ID: 3660080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spinal cord monitoring during spinal operations].
    Grobman J
    Orthopade; 1985 Feb; 14(1):50-3. PubMed ID: 3991195
    [No Abstract]   [Full Text] [Related]  

  • 16. Neuromonitoring, Cerebrospinal Fluid Drainage, and Selective Use of Iliofemoral Conduits to Minimize Risk of Spinal Cord Injury During Complex Endovascular Aortic Repair.
    Banga PV; Oderich GS; Reis de Souza L; Hofer J; Cazares Gonzalez ML; Pulido JN; Cha S; Gloviczki P
    J Endovasc Ther; 2016 Feb; 23(1):139-49. PubMed ID: 26637837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migrating disc complicating spinal decompression in an achondroplastic dwarf: intraoperative demonstration of spinal cord compression by somatosensory evoked potentials.
    McPherson RW; North RB; Udvarhelyi GB; Rosenbaum AE
    Anesthesiology; 1984 Dec; 61(6):764-7. PubMed ID: 6507930
    [No Abstract]   [Full Text] [Related]  

  • 18. Use of somatosensory evoked potentials for intraoperative monitoring of cerebral and spinal cord function.
    Nuwer MR
    Neurol Clin; 1988 Nov; 6(4):881-97. PubMed ID: 3070343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiological monitoring of spinal cord function during instrumented anterior cervical fusion.
    Bose B; Sestokas AK; Schwartz DM
    Spine J; 2004; 4(2):202-7. PubMed ID: 15016399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Multimodal Intraoperative Monitoring During Intramedullary Spinal Ependymoma Surgery.
    Park JH; Lee SH; Kim ES; Eoh W
    World Neurosurg; 2018 Dec; 120():e169-e180. PubMed ID: 30096497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.