These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 33440733)
1. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Kejík Z; Kaplánek R; Masařík M; Babula P; Matkowski A; Filipenský P; Veselá K; Gburek J; Sýkora D; Martásek P; Jakubek M Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440733 [TBL] [Abstract][Full Text] [Related]
2. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. Fernandez MT; Mira ML; Florêncio MH; Jennings KR J Inorg Biochem; 2002 Nov; 92(2):105-11. PubMed ID: 12459155 [TBL] [Abstract][Full Text] [Related]
3. Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach. Mary CPV; Vijayakumar S; Shankar R J Mol Graph Model; 2018 Jan; 79():1-14. PubMed ID: 29127853 [TBL] [Abstract][Full Text] [Related]
4. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Liu Y; Guo M Molecules; 2015 May; 20(5):8583-94. PubMed ID: 25985359 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Rodríguez-Arce E; Saldías M Biomed Pharmacother; 2021 Nov; 143():112236. PubMed ID: 34649360 [TBL] [Abstract][Full Text] [Related]
6. Radical scavenging propensity of Cu Jabeen E; Janjua NK; Ahmed S; Murtaza I; Ali T; Hameed S Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():432-438. PubMed ID: 27572737 [TBL] [Abstract][Full Text] [Related]
7. Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: not just serving as suicide antioxidants! Tay WM; da Silva GF; Ming LJ Inorg Chem; 2013 Jan; 52(2):679-90. PubMed ID: 23301941 [TBL] [Abstract][Full Text] [Related]
8. Transition Metal Coordination Complexes of Flavonoids: A Class of Better Pharmacological Active Molecules to Develop New Drugs. Jayaprakash S; Ramesh S; Karthikeyan A; Murugappan S; Sidharthan P; Selvaraj S Anticancer Agents Med Chem; 2023; 23(4):417-431. PubMed ID: 35619308 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Timoshnikov VA; Selyutina OY; Polyakov NE; Didichenko V; Kontoghiorghes GJ Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163169 [TBL] [Abstract][Full Text] [Related]
10. A Review on Coordination Properties of Al(III) and Fe(III) toward Natural Antioxidant Molecules: Experimental and Theoretical Insights. Malacaria L; Corrente GA; Beneduci A; Furia E; Marino T; Mazzone G Molecules; 2021 Apr; 26(9):. PubMed ID: 33946938 [TBL] [Abstract][Full Text] [Related]
11. The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions. Catapano MC; Tvrdý V; Karlíčková J; Migkos T; Valentová K; Křen V; Mladěnka P Nutrients; 2017 Oct; 9(11):. PubMed ID: 29084179 [TBL] [Abstract][Full Text] [Related]
12. Catalytic antioxidant therapy by metallodrugs: lessons from metallocorroles. Haber A; Gross Z Chem Commun (Camb); 2015 Apr; 51(27):5812-27. PubMed ID: 25664356 [TBL] [Abstract][Full Text] [Related]
13. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Mucha P; Skoczyńska A; Małecka M; Hikisz P; Budzisz E Molecules; 2021 Aug; 26(16):. PubMed ID: 34443474 [TBL] [Abstract][Full Text] [Related]
14. Management of oxidative stress and other pathologies in Alzheimer's disease. Simunkova M; Alwasel SH; Alhazza IM; Jomova K; Kollar V; Rusko M; Valko M Arch Toxicol; 2019 Sep; 93(9):2491-2513. PubMed ID: 31440798 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis and evaluation of 3,4-dihydroxybenzoic acid derivatives as antioxidants, bio-metal chelating agents and acetylcholinesterase inhibitors. Friggeri L; De Vita D; Pandolfi F; Tortorella S; Costi R; Di Santo R; Scipione L J Enzyme Inhib Med Chem; 2015 Feb; 30(1):166-72. PubMed ID: 24517367 [TBL] [Abstract][Full Text] [Related]
16. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Chobot V; Hadacek F Redox Rep; 2011; 16(6):242-7. PubMed ID: 22195992 [TBL] [Abstract][Full Text] [Related]
17. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research. Zhang Q; Jin B; Shi Z; Wang X; Lei S; Tang X; Liang H; Liu Q; Gong M; Peng R J Inorg Biochem; 2017 Jun; 171():29-36. PubMed ID: 28364616 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant and lipoxygenase inhibition studies of 4-(4-bromophenyl)-2,2'-bipyridine and its metal complexes Synthesis, characterization and biological screening. Fazal-Ur-Rehman S; Wasim AA; Khan MA Pak J Pharm Sci; 2019 May; 32(3 Special):1285-1291. PubMed ID: 31551205 [TBL] [Abstract][Full Text] [Related]
19. Advances on Chelation and Chelator Metal Complexes in Medicine. Kontoghiorghes GJ Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260293 [TBL] [Abstract][Full Text] [Related]
20. Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Perron NR; Hodges JN; Jenkins M; Brumaghim JL Inorg Chem; 2008 Jul; 47(14):6153-61. PubMed ID: 18553907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]