These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33440747)
1. Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Zanini S; Šečić E; Busche T; Galli M; Zheng Y; Kalinowski J; Kogel KH Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440747 [TBL] [Abstract][Full Text] [Related]
2. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae. Raman V; Simon SA; Demirci F; Nakano M; Meyers BC; Donofrio NM Mol Plant Microbe Interact; 2017 Jul; 30(7):517-530. PubMed ID: 28504560 [TBL] [Abstract][Full Text] [Related]
3. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. Raman V; Simon SA; Romag A; Demirci F; Mathioni SM; Zhai J; Meyers BC; Donofrio NM BMC Genomics; 2013 May; 14():326. PubMed ID: 23663523 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens. Zhu G; Gao C; Wu C; Li M; Xu JR; Liu H; Wang Q BMC Plant Biol; 2021 Jun; 21(1):304. PubMed ID: 34193039 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. Kawahara Y; Oono Y; Kanamori H; Matsumoto T; Itoh T; Minami E PLoS One; 2012; 7(11):e49423. PubMed ID: 23139845 [TBL] [Abstract][Full Text] [Related]
6. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host immune genes and full virulence. Werner BT; Koch A; Šečić E; Engelhardt J; Jelonek L; Steinbrenner J; Kogel KH PLoS One; 2021; 16(8):e0252365. PubMed ID: 34351929 [TBL] [Abstract][Full Text] [Related]
7. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. Silvestri A; Fiorilli V; Miozzi L; Accotto GP; Turina M; Lanfranco L BMC Genomics; 2019 Mar; 20(1):169. PubMed ID: 30832582 [TBL] [Abstract][Full Text] [Related]
8. Characterizing Small RNAs in Filamentous Fungi Using the Rice Blast Fungus, Magnaporthe oryzae, as an Example. Raman V; Meyers BC; Dean RA; Donofrio NM Methods Mol Biol; 2018; 1848():53-66. PubMed ID: 30182228 [TBL] [Abstract][Full Text] [Related]
9. Comparative profiling of canonical and non-canonical small RNAs in the rice blast fungus, Lee H; Choi G; Lim YJ; Lee YH Front Microbiol; 2022; 13():995334. PubMed ID: 36225371 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Profiling of the Rice Blast Fungus Jeon J; Lee GW; Kim KT; Park SY; Kim S; Kwon S; Huh A; Chung H; Lee DY; Kim CY; Lee YH Mol Plant Microbe Interact; 2020 Feb; 33(2):141-144. PubMed ID: 31634040 [TBL] [Abstract][Full Text] [Related]
11. RNA-Seq of in planta-expressed Magnaporthe oryzae genes identifies MoSVP as a highly expressed gene required for pathogenicity at the initial stage of infection. Shimizu M; Nakano Y; Hirabuchi A; Yoshino K; Kobayashi M; Yamamoto K; Terauchi R; Saitoh H Mol Plant Pathol; 2019 Dec; 20(12):1682-1695. PubMed ID: 31560822 [TBL] [Abstract][Full Text] [Related]
12. Two virulent sRNAs identified by genomic sequencing target the type III secretion system in rice bacterial blight pathogen. Hu Y; Zhang L; Wang X; Sun F; Kong X; Dong H; Xu H BMC Plant Biol; 2018 Oct; 18(1):237. PubMed ID: 30326834 [TBL] [Abstract][Full Text] [Related]
13. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. Dong Y; Li Y; Zhao M; Jing M; Liu X; Liu M; Guo X; Zhang X; Chen Y; Liu Y; Liu Y; Ye W; Zhang H; Wang Y; Zheng X; Wang P; Zhang Z PLoS Pathog; 2015 Apr; 11(4):e1004801. PubMed ID: 25837042 [TBL] [Abstract][Full Text] [Related]
14. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416 [TBL] [Abstract][Full Text] [Related]
15. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
16. [Transcriptome analysis of early interaction between rice and Magnaporthe oryzae using next-generation sequencing technology]. Li XL; Bai B; Wu J; Deng QY; Zhou B Yi Chuan; 2012 Jan; 34(1):102-12. PubMed ID: 22306879 [TBL] [Abstract][Full Text] [Related]
17. Deng S; Sun W; Dong L; Cui G; Deng YZ mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736 [No Abstract] [Full Text] [Related]
18. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae. Zhou Z; Pang Z; Li G; Lin C; Wang J; Lv Q; He C; Zhu L Mol Plant Pathol; 2016 Oct; 17(8):1211-22. PubMed ID: 26679839 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice. Chen S; Songkumarn P; Venu RC; Gowda M; Bellizzi M; Hu J; Liu W; Ebbole D; Meyers B; Mitchell T; Wang GL Mol Plant Microbe Interact; 2013 Feb; 26(2):191-202. PubMed ID: 23035914 [TBL] [Abstract][Full Text] [Related]
20. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]