BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33441541)

  • 1. Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington's disease mice.
    Alcalá-Vida R; Seguin J; Lotz C; Molitor AM; Irastorza-Azcarate I; Awada A; Karasu N; Bombardier A; Cosquer B; Skarmeta JLG; Cassel JC; Boutillier AL; Sexton T; Merienne K
    Nat Commun; 2021 Jan; 12(1):364. PubMed ID: 33441541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.
    Ament SA; Pearl JR; Grindeland A; St Claire J; Earls JC; Kovalenko M; Gillis T; Mysore J; Gusella JF; Lee JM; Kwak S; Howland D; Lee MY; Baxter D; Scherler K; Wang K; Geman D; Carroll JB; MacDonald ME; Carlson G; Wheeler VC; Price ND; Hood LE
    Hum Mol Genet; 2017 Mar; 26(5):913-922. PubMed ID: 28334820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington's disease.
    Yildirim F; Ng CW; Kappes V; Ehrenberger T; Rigby SK; Stivanello V; Gipson TA; Soltis AR; Vanhoutte P; Caboche J; Housman DE; Fraenkel E
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24840-24851. PubMed ID: 31744868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.
    Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME
    Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription elongation and tissue-specific somatic CAG instability.
    Goula AV; Stys A; Chan JP; Trottier Y; Festenstein R; Merienne K
    PLoS Genet; 2012; 8(11):e1003051. PubMed ID: 23209427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional correlates of the pathological phenotype in a Huntington's disease mouse model.
    Gallardo-Orihuela A; Hervás-Corpión I; Hierro-Bujalance C; Sanchez-Sotano D; Jiménez-Gómez G; Mora-López F; Campos-Caro A; Garcia-Alloza M; Valor LM
    Sci Rep; 2019 Dec; 9(1):18696. PubMed ID: 31822756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Nucleus RNA-Seq Reveals Dysregulation of Striatal Cell Identity Due to Huntington's Disease Mutations.
    Malaiya S; Cortes-Gutierrez M; Herb BR; Coffey SR; Legg SRW; Cantle JP; Colantuoni C; Carroll JB; Ament SA
    J Neurosci; 2021 Jun; 41(25):5534-5552. PubMed ID: 34011527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease.
    Sebastianutto I; Cenci MA; Fieblinger T
    Neurobiol Dis; 2017 Sep; 105():117-131. PubMed ID: 28578004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.
    Handley RR; Reid SJ; Brauning R; Maclean P; Mears ER; Fourie I; Patassini S; Cooper GJS; Rudiger SR; McLaughlan CJ; Verma PJ; Gusella JF; MacDonald ME; Waldvogel HJ; Bawden CS; Faull RLM; Snell RG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11293-E11302. PubMed ID: 29229845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks.
    Mehler MF; Petronglo JR; Arteaga-Bracho EE; Gulinello ME; Winchester ML; Pichamoorthy N; Young SK; DeJesus CD; Ishtiaq H; Gokhan S; Molero AE
    J Neurosci; 2019 Mar; 39(10):1892-1909. PubMed ID: 30626701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetics of Huntington's Disease.
    Bassi S; Tripathi T; Monziani A; Di Leva F; Biagioli M
    Adv Exp Med Biol; 2017; 978():277-299. PubMed ID: 28523552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the htt
    McAdam RL; Morton A; Gordon SL; Alterman JF; Khvorova A; Cousin MA; Smillie KJ
    Neurobiol Dis; 2020 Feb; 134():104637. PubMed ID: 31614197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease.
    Dai Y; Dudek NL; Li Q; Fowler SC; Muma NA
    J Neurosci; 2009 Sep; 29(37):11550-9. PubMed ID: 19759302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington's disease mice.
    Suelves N; Kirkham-McCarthy L; Lahue RS; Ginés S
    Sci Rep; 2017 Jul; 7(1):6082. PubMed ID: 28729730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice.
    Achour M; Le Gras S; Keime C; Parmentier F; Lejeune FX; Boutillier AL; Néri C; Davidson I; Merienne K
    Hum Mol Genet; 2015 Jun; 24(12):3481-96. PubMed ID: 25784504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered anterograde axonal transport of mitochondria in cultured striatal neurons of a knock-in mouse model of Huntington's disease.
    Wu C; Yin H; Fu S; Yoo H; Zhang M; Park H
    Biochem Biophys Res Commun; 2024 Jan; 691():149246. PubMed ID: 38029540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease.
    McBride JL; Ramaswamy S; Gasmi M; Bartus RT; Herzog CD; Brandon EP; Zhou L; Pitzer MR; Berry-Kravis EM; Kordower JH
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9345-50. PubMed ID: 16751280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.
    Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS
    J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.