These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33441557)

  • 1. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning.
    Abrol A; Fu Z; Salman M; Silva R; Du Y; Plis S; Calhoun V
    Nat Commun; 2021 Jan; 12(1):353. PubMed ID: 33441557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry.
    Dufumier B; Gori P; Petiton S; Louiset R; Mangin JF; Grigis A; Duchesnay E
    Neuroimage; 2024 Aug; 296():120665. PubMed ID: 38848981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning in resting-state fMRI
    Abrol A; Hassanzadeh R; Plis S; Calhoun V
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3965-3969. PubMed ID: 34892099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis.
    Quaak M; van de Mortel L; Thomas RM; van Wingen G
    Neuroimage Clin; 2021; 30():102584. PubMed ID: 33677240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets.
    Schulz MA; Yeo BTT; Vogelstein JT; Mourao-Miranada J; Kather JN; Kording K; Richards B; Bzdok D
    Nat Commun; 2020 Aug; 11(1):4238. PubMed ID: 32843633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of gender from longitudinal MRI data via deep learning on adolescent data reveals unique patterns associated with brain structure and change over a two-year period.
    Bi Y; Abrol A; Fu Z; Chen J; Liu J; Calhoun V
    J Neurosci Methods; 2023 Jan; 384():109744. PubMed ID: 36400261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases.
    Pizarro R; Assemlal HE; De Nigris D; Elliott C; Antel S; Arnold D; Shmuel A
    Neuroinformatics; 2019 Jan; 17(1):115-130. PubMed ID: 29956131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Prediction and Visualization of Gender Related Brain Changes from Longitudinal Structural MRI Data in the ABCD Study.
    Bi Y; Abrol A; Fu Z; Calhoun V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3814-3817. PubMed ID: 36086576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.
    Vieira S; Pinaya WH; Mechelli A
    Neurosci Biobehav Rev; 2017 Mar; 74(Pt A):58-75. PubMed ID: 28087243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing and deploying deep learning models in brain magnetic resonance imaging: A review.
    Aggarwal K; Manso Jimeno M; Ravi KS; Gonzalez G; Geethanath S
    NMR Biomed; 2023 Dec; 36(12):e5014. PubMed ID: 37539775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive modelling of brain disorders with magnetic resonance imaging: A systematic review of modelling practices, transparency, and interpretability in the use of convolutional neural networks.
    O'Connell S; Cannon DM; Broin PÓ
    Hum Brain Mapp; 2023 Dec; 44(18):6561-6574. PubMed ID: 37909364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study.
    Mårtensson G; Ferreira D; Granberg T; Cavallin L; Oppedal K; Padovani A; Rektorova I; Bonanni L; Pardini M; Kramberger MG; Taylor JP; Hort J; Snædal J; Kulisevsky J; Blanc F; Antonini A; Mecocci P; Vellas B; Tsolaki M; Kłoszewska I; Soininen H; Lovestone S; Simmons A; Aarsland D; Westman E
    Med Image Anal; 2020 Dec; 66():101714. PubMed ID: 33007638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating myelin-water content from anatomical and diffusion images using spatially undersampled myelin-water imaging through machine learning.
    Drenthen GS; Backes WH; Jansen JFA
    Neuroimage; 2021 Feb; 226():117626. PubMed ID: 33301943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.