These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33441689)

  • 21. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador.
    Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applied aerial spectroscopy: A case study on remote sensing of an ancient and semi-natural woodland.
    Ahmed S; Nicholson CE; Muto P; Perry JJ; Dean JR
    PLoS One; 2021; 16(11):e0260056. PubMed ID: 34780569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling.
    Jiménez-Brenes FM; López-Granados F; de Castro AI; Torres-Sánchez J; Serrano N; Peña JM
    Plant Methods; 2017; 13():55. PubMed ID: 28694843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Terrain Characterization via Machine vs. Deep Learning Using Remote Sensing.
    Ewing J; Oommen T; Thomas J; Kasaragod A; Dobson R; Brooks C; Jayakumar P; Cole M; Ersal T
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fusion neural networks for plant classification: learning to combine RGB, hyperspectral, and lidar data.
    Scholl VM; McGlinchy J; Price-Broncucia T; Balch JK; Joseph MB
    PeerJ; 2021; 9():e11790. PubMed ID: 34395073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.
    Gatziolis D; Lienard JF; Vogs A; Strigul NS
    PLoS One; 2015; 10(9):e0137765. PubMed ID: 26393926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction of
    Wu J; Peng SF; Jiang FG; Tang J; Sun H
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2449-2457. PubMed ID: 34313063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early detection of pine wilt disease tree candidates using time-series of spectral signatures.
    Yu R; Huo L; Huang H; Yuan Y; Gao B; Liu Y; Yu L; Li H; Yang L; Ren L; Luo Y
    Front Plant Sci; 2022; 13():1000093. PubMed ID: 36311089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of object-oriented remote sensing image classification based on different decision trees in forest area.
    Chen LP; Sun YJ
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3995-4003. PubMed ID: 30584726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands.
    Gülci S
    Environ Monit Assess; 2019 Jul; 191(8):495. PubMed ID: 31302796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN.
    Safonova A; Guirado E; Maglinets Y; Alcaraz-Segura D; Tabik S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Feasibility of Modelling the Crown Profile of
    Quan Y; Li M; Zhen Z; Hao Y; Wang B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Efficient Deep Learning Mechanism for the Recognition of Olive Trees in Jouf Region.
    Alshammari HH; Shahin OR
    Comput Intell Neurosci; 2022; 2022():9249530. PubMed ID: 36093507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.
    Meneguzzo DM; Liknes GC; Nelson MD
    Environ Monit Assess; 2013 Aug; 185(8):6261-75. PubMed ID: 23255169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone.
    Holiaka D; Kato H; Yoschenko V; Onda Y; Igarashi Y; Nanba K; Diachuk P; Holiaka M; Zadorozhniuk R; Kashparov V; Chyzhevskyi I
    J Environ Manage; 2021 Oct; 295():113319. PubMed ID: 34348433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data.
    Xu KJ; Tian QJ; Yue JB; Tang SF
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3986-3994. PubMed ID: 30584725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.
    Sandino J; Pegg G; Gonzalez F; Smith G
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.