These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33441905)

  • 1. Embeddings from deep learning transfer GO annotations beyond homology.
    Littmann M; Heinzinger M; Dallago C; Olenyi T; Rost B
    Sci Rep; 2021 Jan; 11(1):1160. PubMed ID: 33441905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate protein function prediction via graph attention networks with predicted structure information.
    Lai B; Xu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank.
    You R; Zhang Z; Xiong Y; Sun F; Mamitsuka H; Zhu S
    Bioinformatics; 2018 Jul; 34(14):2465-2473. PubMed ID: 29522145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FunPredCATH: An ensemble method for predicting protein function using CATH.
    Bonello J; Orengo C
    Biochim Biophys Acta Proteins Proteom; 2024 Feb; 1872(2):140985. PubMed ID: 38122964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.
    Zhang C; Zheng W; Freddolino PL; Zhang Y
    J Mol Biol; 2018 Jul; 430(15):2256-2265. PubMed ID: 29534977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NetGO: improving large-scale protein function prediction with massive network information.
    You R; Yao S; Xiong Y; Huang X; Sun F; Mamitsuka H; Zhu S
    Nucleic Acids Res; 2019 Jul; 47(W1):W379-W387. PubMed ID: 31106361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organizing the bacterial annotation space with amino acid sequence embeddings.
    Grigson SR; McKerral JC; Mitchell JG; Edwards RA
    BMC Bioinformatics; 2022 Sep; 23(1):385. PubMed ID: 36151519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.
    Zhang F; Song H; Zeng M; Wu FX; Li Y; Pan Y; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2208-2217. PubMed ID: 31985440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. INGA 2.0: improving protein function prediction for the dark proteome.
    Piovesan D; Tosatto SCE
    Nucleic Acids Res; 2019 Jul; 47(W1):W373-W378. PubMed ID: 31073595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FFPred 2.0: improved homology-independent prediction of gene ontology terms for eukaryotic protein sequences.
    Minneci F; Piovesan D; Cozzetto D; Jones DT
    PLoS One; 2013; 8(5):e63754. PubMed ID: 23717476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for functional annotation prediction based on combination of classification methods.
    Jung J; Lee HK; Yi G
    ScientificWorldJournal; 2014; 2014():542824. PubMed ID: 25133242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets.
    Dallago C; Schütze K; Heinzinger M; Olenyi T; Littmann M; Lu AX; Yang KK; Min S; Yoon S; Morton JT; Rost B
    Curr Protoc; 2021 May; 1(5):e113. PubMed ID: 33961736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESG: extended similarity group method for automated protein function prediction.
    Chitale M; Hawkins T; Park C; Kihara D
    Bioinformatics; 2009 Jul; 25(14):1739-45. PubMed ID: 19435743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blinded Testing of Function Annotation for uPE1 Proteins by I-TASSER/COFACTOR Pipeline Using the 2018-2019 Additions to neXtProt and the CAFA3 Challenge.
    Zhang C; Lane L; Omenn GS; Zhang Y
    J Proteome Res; 2019 Dec; 18(12):4154-4166. PubMed ID: 31581775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting Gene Ontology Annotations Derived from Sequence Homology Methods.
    Feuermann M; Gaudet P
    Methods Mol Biol; 2024; 2836():285-298. PubMed ID: 38995546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual annotation-based prediction of protein domain functions with Domain2GO.
    Ulusoy E; Doğan T
    Protein Sci; 2024 Jun; 33(6):e4988. PubMed ID: 38757367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.