These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 33441936)
1. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Tien HJ; Yang HC; Shueng PW; Chen JC Sci Rep; 2021 Jan; 11(1):1133. PubMed ID: 33441936 [TBL] [Abstract][Full Text] [Related]
2. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
3. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
4. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709 [TBL] [Abstract][Full Text] [Related]
5. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
6. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy. Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234 [TBL] [Abstract][Full Text] [Related]
7. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390 [TBL] [Abstract][Full Text] [Related]
8. Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN. Lu Q; Luo F; Shi J; Xu K Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39264056 [No Abstract] [Full Text] [Related]
9. Improving cone-beam CT quality using a cycle-residual connection with a dilated convolution-consistent generative adversarial network. Deng L; Zhang M; Wang J; Huang S; Yang X Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35728794 [No Abstract] [Full Text] [Related]
10. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related]
11. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy. Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710 [TBL] [Abstract][Full Text] [Related]
12. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: a human skull phantom study. Yong TH; Yang S; Lee SJ; Park C; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ Sci Rep; 2021 Jul; 11(1):15083. PubMed ID: 34301984 [TBL] [Abstract][Full Text] [Related]
13. Visual enhancement of Cone-beam CT by use of CycleGAN. Kida S; Kaji S; Nawa K; Imae T; Nakamoto T; Ozaki S; Ohta T; Nozawa Y; Nakagawa K Med Phys; 2020 Mar; 47(3):998-1010. PubMed ID: 31840269 [TBL] [Abstract][Full Text] [Related]
14. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy. Wang H; Liu X; Kong L; Huang Y; Chen H; Ma X; Duan Y; Shao Y; Feng A; Shen Z; Gu H; Kong Q; Xu Z; Zhou Y Strahlenther Onkol; 2023 May; 199(5):485-497. PubMed ID: 36688953 [TBL] [Abstract][Full Text] [Related]
15. Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy. Yuan N; Dyer B; Rao S; Chen Q; Benedict S; Shang L; Kang Y; Qi J; Rong Y Phys Med Biol; 2020 Jan; 65(3):035003. PubMed ID: 31842014 [TBL] [Abstract][Full Text] [Related]
16. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related]
17. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
18. Synthetic CT generation based on CBCT using respath-cycleGAN. Deng L; Hu J; Wang J; Huang S; Yang X Med Phys; 2022 Aug; 49(8):5317-5329. PubMed ID: 35488299 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based thoracic CBCT correction with histogram matching. Qiu RLJ; Lei Y; Shelton J; Higgins K; Bradley JD; Curran WJ; Liu T; Kesarwala AH; Yang X Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34654011 [TBL] [Abstract][Full Text] [Related]
20. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy. Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]